2

Linear Independence, Span, and Bases

2.1	Span and Linear Independence 2	2 -1
2.2	Basis and Dimension of a Vector Space 2	<u>2</u> -3
2.3	Direct Sum Decompositions 2	<u>2</u> -4
2.4	Matrix Range, Null Space, Rank, and the Dimension	2-6
2.5	Nonsingularity Characterizations 2	2 -9
2.6	Coordinates and Change of Basis 2	2 -10
2.7	Idempotence and Nilpotence 2	2 -12
Refer	ences	2 -12

Mark Mills Central College

2.1 Span and Linear Independence

Let V be a vector space over a field F.

Definitions:

A **linear combination** of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ is a sum of scalar multiples of these vectors; that is, $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k$, for some scalar coefficients $c_1, c_2, \dots, c_k \in F$. If *S* is a set of vectors in *V*, a linear combination of vectors in *S* is a vector of the form $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k$ with $k \in \mathbb{N}, \mathbf{v}_i \in S, c_i \in F$. Note that *S* may be finite or infinite, but a linear combination is, by definition, a finite sum. The zero vector is defined to be a linear combination of the empty set.

When all the scalar coefficients in a linear combination are 0, it is a **trivial linear combination**. A sum over the empty set is also a trivial linear combination.

The **span** of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ is the set of all linear combinations of these vectors, denoted by Span $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$. If S is a (finite or infinite) set of vectors in V, then the span of S, denoted by Span(S), is the set of all linear combinations of vectors in S.

If V = Span(S), then S spans the vector space V.

A (finite or infinite) set of vectors *S* in *V* is **linearly independent** if the only linear combination of distinct vectors in *S* that produces the zero vector is a trivial linear combination. That is, if \mathbf{v}_i are distinct vectors in *S* and $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_k\mathbf{v}_k = \mathbf{0}$, then $c_1 = c_2 = \cdots = c_k = 0$. Vectors that are not linearly independent are **linearly dependent**. That is, there exist distinct vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \in S$ and c_1, c_2, \ldots, c_k not all 0 such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_k\mathbf{v}_k = \mathbf{0}$.

Facts: The following facts can be found in [Lay03, Sections 4.1 and 4.3].

- 1. $\text{Span}(\emptyset) = \{0\}.$
- 2. A linear combination of a single vector **v** is simply a scalar multiple of **v**.
- 3. In a vector space V, $\text{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$ is a subspace of V.
- 4. Suppose the set of vectors $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k}$ spans the vector space V. If one of the vectors, say \mathbf{v}_i , is a linear combination of the remaining vectors, then the set formed from S by removing \mathbf{v}_i still spans V.
- 5. Any single nonzero vector is linearly independent.
- 6. Two nonzero vectors are linearly independent if and only if neither is a scalar multiple of the other.
- 7. If *S* spans *V* and $S \subseteq T$, then *T* spans *V*.
- 8. If *T* is a linearly independent subset of *V* and $S \subseteq T$, then *S* is linearly independent.
- 9. Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly dependent if and only if $\mathbf{v}_i = c_1\mathbf{v}_1 + \dots + c_{i-1}\mathbf{v}_{i-1} + c_{i+1}\mathbf{v}_{i+1} + \dots + c_k\mathbf{v}_k$, for some $1 \le i \le k$ and some scalars $c_1, \dots, c_{i-1}, c_{i+1}, \dots, c_k$. A set *S* of vectors in *V* is linearly dependent if and only if there exists $\mathbf{v} \in S$ such that \mathbf{v} is a linear combination of other vectors in *S*.
- 10. Any set of vectors that includes the zero vector is linearly dependent.

Examples:

1. Linear combinations of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 3 \end{bmatrix} \in \mathbb{R}^2$ are vectors of the form $c_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \begin{bmatrix} c_1 \\ -c_1 + 3c_2 \end{bmatrix}$,

for any scalars $c_1, c_2 \in \mathbb{R}$. Any vector of this form is in Span $\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \end{bmatrix} \right)$. In fact,

Span
$$\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \end{bmatrix} \right) = \mathbb{R}^2$$
 and these vectors are linearly independent.

- 2. If $\mathbf{v} \in \mathbb{R}^n$ and $\mathbf{v} \neq \mathbf{0}$, then geometrically Span(\mathbf{v}) is a line in \mathbb{R}^n through the origin.
- 3. Suppose $n \ge 2$ and $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^n$ are linearly independent vectors. Then geometrically $\text{Span}(\mathbf{v}_1, \mathbf{v}_2)$ is a plane in \mathbb{R}^n through the origin.
- 4. Any polynomial p(x) ∈ ℝ[x] of degree less than or equal to 2 can easily be seen to be a linear combination of 1, x, and x². However, p(x) is also a linear combination of 1, 1 + x, and 1 + x². So Span(1, x, x²) = Span(1, 1 + x, 1 + x²) = ℝ[x; 2].

5. The *n* vectors
$$\mathbf{e}_1 = \begin{bmatrix} 1\\0\\0\\\vdots\\0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix}$, ..., $\mathbf{e}_n = \begin{bmatrix} 0\\0\\\vdots\\0\\1 \end{bmatrix}$ span F^n , for any field *F*. These vectors are

also linearly independent.

6. In
$$\mathbb{R}^2$$
, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$ are linearly independent. However, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$ are linearly dependent, because $\begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 3 \end{bmatrix}$.

- 7. The infinite set $\{1, x, x^2, ..., x^n, ...\}$ is linearly independent in F[x], for any field F.
- 8. In the vector space of continuous real-valued functions on the real line, $C(\mathbb{R})$, the set {sin(x), sin(2x), ..., sin(nx), cos(x), cos(2x), ..., cos(nx)} is linearly independent for any $n \in \mathbb{N}$. The infinite set {sin(x), sin(2x), ..., sin(nx), ..., cos(x), cos(2x), ..., cos(nx), ...} is also linearly independent in $C(\mathbb{R})$.

Applications:

1. The homogeneous differential equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$ has as solutions $y_1(x) = e^{2x}$ and $y_2(x) = e^x$. Any linear combination $y(x) = c_1y_1(x) + c_2y_2(x)$ is a solution of the differential equation, and so Span (e^{2x}, e^x) is contained in the set of solutions of the differential equation (called the solution space for the differential equation). In fact, the solution space is spanned by e^{2x} and e^x , and so is a subspace of the vector space of functions. In general, the solution space for a homogeneous differential equation is a vector space, meaning that any linear combination of solutions is again a solution.

2.2 Basis and Dimension of a Vector Space

Let V be a vector space over a field F.

Definitions:

A set of vectors \mathcal{B} in a vector space V is a **basis** for V if

- \mathcal{B} is a linearly independent set, and
- Span(\mathcal{B}) = V.

The set
$$\mathcal{E}_n = \left\{ \mathbf{e}_1 = \begin{bmatrix} 1\\0\\0\\\vdots\\0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix}, \dots, \mathbf{e}_n = \begin{bmatrix} 0\\0\\\vdots\\0\\1 \end{bmatrix} \right\}$$
 is the **standard basis** for F^n .

The number of vectors in a basis for a vector space V is the **dimension** of V, denoted by dim(V). If a basis for V contains a finite number of vectors, then V is **finite dimensional**. Otherwise, V is **infinite dimensional**, and we write dim $(V) = \infty$.

Facts: All the following facts, except those with a specific reference, can be found in [Lay03, Sections 4.3 and 4.5].

- 1. Every vector space has a basis.
- 2. The standard basis for F^n is a basis for F^n , and so dim $F^n = n$.
- 3. A basis \mathcal{B} in a vector space V is the largest set of linearly independent vectors in V that contains \mathcal{B} , and it is the smallest set of vectors in V that contains \mathcal{B} and spans V.
- 4. The empty set is a basis for the trivial vector space $\{0\}$, and dim $(\{0\}) = 0$.
- 5. If the set $S = {\mathbf{v}_1, \dots, \mathbf{v}_p}$ spans a vector space *V*, then some subset of *S* forms a basis for *V*. In particular, if one of the vectors, say \mathbf{v}_i , is a linear combination of the remaining vectors, then the set formed from *S* by removing \mathbf{v}_i will be "closer" to a basis for *V*. This process can be continued until the remaining vectors form a basis for *V*.
- 6. If *S* is a linearly independent set in a vector space *V*, then *S* can be expanded, if necessary, to a basis for *V*.
- 7. No nontrivial vector space over a field with more than two elements has a unique basis.
- 8. If a vector space V has a basis containing n vectors, then every basis of V must contain n vectors. Similarly, if V has an infinite basis, then every basis of V must be infinite. So the dimension of V is unique.
- 9. Let $\dim(V) = n$ and let *S* be a set containing *n* vectors. The following are equivalent:
 - *S* is a basis for *V*.
 - S spans V.
 - *S* is linearly independent.

- 10. If $\dim(V) = n$, then any subset of V containing more than n vectors is linearly dependent.
- 11. If $\dim(V) = n$, then any subset of V containing fewer than n vectors does not span V.
- 12. [Lay03, Section 4.4] If $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is a basis for a vector space V, then each $\mathbf{x} \in V$ can be expressed as a unique linear combination of the vectors in \mathcal{B} . That is, for each $\mathbf{x} \in V$ there is a unique set of scalars c_1, c_2, \ldots, c_p such that $\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \cdots + c_p \mathbf{b}_p$.

Examples:

- 1. In \mathbb{R}^2 , $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$ are linearly independent, and they span \mathbb{R}^2 . So they form a basis for \mathbb{R}^2 and $\dim(\mathbb{R}^2) = 2.$
- 2. In F[x], the set $\{1, x, x^2, \ldots, x^n\}$ is a basis for F[x; n] for any $n \in \mathbb{N}$. The infinite set $\{1, x, x^2, x^3, \ldots\}$ is a basis for F[x], meaning dim $(F[x]) = \infty$.
- 3. The set of $m \times n$ matrices E_{ij} having a 1 in the *i*, *j*-entry and zeros everywhere else forms a basis for $F^{m \times n}$. Since there are *mn* such matrices, dim $(F^{m \times n}) = mn$.
- 4. The set $S = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ clearly spans \mathbb{R}^2 , but it is not a linearly independent set. However,

removing any single vector from S will cause the remaining vectors to be a basis for \mathbb{R}^2 , because any pair of vectors is linearly independent and still spans \mathbb{R}^2 .

5. The set $S = \begin{cases} \begin{vmatrix} 1 \\ 1 \\ 0 \\ 0 \end{vmatrix}$, $\begin{vmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{cases}$ is linearly independent, but it cannot be a basis for \mathbb{R}^4 since it does

not span \mathbb{R}^4 . However, we can start expanding it to a basis for \mathbb{R}^4 by first adding a vector that is not

in the span of *S*, such as $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$. Then since these three vectors still do not span \mathbb{R}^4 , we can add a vector that is not in their span, such as $\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$. These four vectors now span \mathbb{R}^4 and they are linearly

independent, so they form a basis for \mathbb{R}^4 .

6. Additional techniques for determining whether a given finite set of vectors is linearly independent or spans a given subspace can be found in Sections 2.5 and 2.6.

Applications:

1. Because $y_1(x) = e^{2x}$ and $y_2(x) = e^x$ are linearly independent and span the solution space for the homogeneous differential equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$, they form a basis for the solution space and the solution space has dimension 2

Direct Sum Decompositions 2.3

Throughout this section, V will be a vector space over a field F, and W_i , for $i = 1, \ldots, k$, will be subspaces of V. For facts and general reading for this section, see [HK71].

Definitions:

The sum of subspaces W_i , for i = 1, ..., k, is $\sum_{i=1}^k W_i = W_1 + \cdots + W_k = \{\mathbf{w}_1 + \cdots + \mathbf{w}_k \mid \mathbf{w}_i \in W_i\}$. The sum $W_1 + \cdots + W_k$ is a **direct sum** if for all i = 1, ..., k, we have $W_i \cap \sum_{j \neq i} W_j = \{\mathbf{0}\}$. $W = W_1 \oplus \cdots \oplus W_k$ denotes that $W = W_1 + \cdots + W_k$ and the sum is direct. The subspaces W_i , for i = i, ..., k, are **independent** if for $\mathbf{w}_i \in W_i, \mathbf{w}_1 + \cdots + \mathbf{w}_k = \mathbf{0}$ implies $\mathbf{w}_i = \mathbf{0}$ for all i = 1, ..., k. Let V_i , for i = 1, ..., k, be vector spaces over F. The **external direct sum** of the V_i , denoted $V_1 \times \cdots \times V_k$, is the cartesian product of V_i , for i = 1, ..., k, with coordinate-wise operations. Let W be a subspace of V. An **additive coset** of W is a subset of the form $v + W = \{v + w \mid w \in W\}$ with $v \in V$. The **quotient** of V by W, denoted V/W, is the set of additive cosets of W with operations $(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$ and c(v + W) = (cv) + W, for any $c \in F$. Let $V = W \oplus U$, let \mathcal{B}_W and \mathcal{B}_U be bases for W and U respectively, and let $\mathcal{B} = \mathcal{B}_W \cup \mathcal{B}_U$. The **induced basis** of \mathcal{B} in V/W is the set of vectors $\{u + W \mid u \in \mathcal{B}_U\}$.

Facts:

- 1. $W = W_1 \oplus W_2$ if and only if $W = W_1 + W_2$ and $W_1 \cap W_2 = \{0\}$.
- 2. If *W* is a subspace of *V*, then there exists a subspace *U* of *V* such that $V = W \oplus U$. Note that *U* is not usually unique.
- 3. Let $W = W_1 + \cdots + W_k$. The following are equivalent:
 - $W = W_1 \oplus \cdots \oplus W_k$. That is, for all $i = 1, \ldots, k$, we have $W_i \cap \sum_{j \neq i} W_j = \{\mathbf{0}\}$.
 - $W_i \cap \sum_{i=1}^{i-1} W_i = \{0\}$, for all i = 2, ..., k.
 - For each $\mathbf{w} \in W$, \mathbf{w} can be expressed in exactly one way as a sum of vectors in W_1, \ldots, W_k . That is, there exist unique $\mathbf{w}_i \in W_i$, such that $\mathbf{w} = \mathbf{w}_1 + \cdots + \mathbf{w}_k$.
 - The subspaces W_i , for i = 1, ..., k, are independent.
 - If \mathcal{B}_i is an (ordered) basis for W_i , then $\mathcal{B} = \bigcup_{i=1}^k \mathcal{B}_i$ is an (ordered) basis for W.
- 4. If \mathcal{B} is a basis for V and \mathcal{B} is partitioned into disjoint subsets \mathcal{B}_i , for i = 1, ..., k, then $V = \text{Span}(\mathcal{B}_1) \oplus \cdots \oplus \text{Span}(\mathcal{B}_k)$.
- 5. If *S* is a linearly independent subset of *V* and *S* is partitioned into disjoint subsets S_i , for i = 1, ..., k, then the subspaces $\text{Span}(S_1), ..., \text{Span}(S_k)$ are independent.
- 6. If V is finite dimensional and $V = W_1 + \cdots + W_k$, then $\dim(V) = \dim(W_1) + \cdots + \dim(W_k)$ if and only if $V = W_1 \oplus \cdots \oplus W_k$.
- 7. Let V_i , for i = 1, ..., k, be vector spaces over F.
 - $V_1 \times \cdots \times V_k$ is a vector space over F.
 - $\widehat{V}_i = \{(0, \dots, 0, \nu_i, 0, \dots, 0) \mid \nu_i \in V_i\}$ (where ν_i is the *i*th coordinate) is a subspace of $V_1 \times \cdots \times V_k$.
 - $V_1 \times \cdots \times V_k = \widehat{V}_1 \oplus \cdots \oplus \widehat{V}_k.$
 - If V_i , for i = 1, ..., k, are finite dimensional, then dim $\widehat{V}_i = \dim V_i$ and dim $(V_1 \times \cdots \times V_k) = \dim V_1 + \cdots + \dim V_k$.
- 8. If W is a subspace of V, then the quotient V/W is a vector space over F.
- 9. Let $V = W \oplus U$, let \mathcal{B}_W and \mathcal{B}_U be bases for W and U respectively, and let $\mathcal{B} = \mathcal{B}_W \cup \mathcal{B}_U$. The induced basis of \mathcal{B} in V/W is a basis for V/W and dim $(V/W) = \dim U$.

Examples:

1. Let $\mathcal{B} = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a basis for *V*. Then $V = \text{Span}(\mathbf{v}_1) \oplus \dots \oplus \text{Span}(\mathbf{v}_n)$.

2. Let
$$X = \left\{ \begin{bmatrix} x \\ 0 \end{bmatrix} | x \in \mathbb{R} \right\}, Y = \left\{ \begin{bmatrix} 0 \\ y \end{bmatrix} | y \in \mathbb{R} \right\}$$
, and $Z = \left\{ \begin{bmatrix} z \\ z \end{bmatrix} | z \in \mathbb{R} \right\}$. Then $\mathbb{R}^2 = X \oplus Y = Y \oplus Z = X \oplus Z$.

- 3. In $F^{n \times n}$, let W_1 be the subspace of symmetric matrices and W_2 be the subspace of skew-symmetric matrices. Clearly, $W_1 \cap W_2 = \{\mathbf{0}\}$. For any $A \in F^{n \times n}$, $A = \frac{A + A^T}{2} + \frac{A A^T}{2}$, where $\frac{A + A^T}{2} \in W_1$ and $\frac{A A^T}{2} \in W_2$. Therefore, $F^{n \times n} = W_1 \oplus W_2$.
- 4. Recall that the function $f \in C(\mathbb{R})$ is even if f(-x) = f(x) for all x, and f is odd if f(-x) = -f(x) for all x. Let W_1 be the subspace of even functions and W_2 be the subspace of odd functions. Clearly, $W_1 \cap W_2 = \{\mathbf{0}\}$. For any $f \in C(\mathbb{R})$, $f = f_1 + f_2$, where $f_1(x) = \frac{f(x) + f(-x)}{2} \in W_1$ and $f_1(x) = \frac{f(x) - f(-x)}{2} \in W_2$. Therefore, $C(\mathbb{R}) = W_1 \oplus W_2$.
- 5. Given a subspace W of V, we can find a subspace U such that $V = W \oplus U$ by choosing a basis for W, extending this linearly independent set to a basis for V, and setting U equal to the span of

the basis vectors not in W. For example, in \mathbb{R}^3 , Let $W = \left\{ \begin{bmatrix} a \\ -2a \\ a \end{bmatrix} \mid a \in \mathbb{R} \right\}$. If $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$,

then {w} is a basis for W. Extend this to a basis for \mathbb{R}^3 , for example by adjoining \mathbf{e}_1 and \mathbf{e}_2 . Thus, $V = W \oplus U$, where $U = \text{Span}(\mathbf{e}_1, \mathbf{e}_2)$. Note: there are many other ways to extend the basis, and many other possible U.

6. In the external direct sum $\mathbb{R}[x; 2] \times \mathbb{R}^{2 \times 2}$, $\begin{pmatrix} 2x^2 + 7, \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \end{pmatrix} + 3 \begin{pmatrix} x^2 + 4x - 2, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \end{pmatrix} = \begin{pmatrix} 5x^2 + 12x + 1, \begin{bmatrix} 1 & 5 \\ 0 & 4 \end{bmatrix} \end{pmatrix}$.

7. The subspaces X, Y, Z of \mathbb{R}^2 in Example 2 have bases $\mathcal{B}_X = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix} \right\}, \mathcal{B}_Y = \left\{ \begin{bmatrix} 0\\1 \end{bmatrix} \right\}, \mathcal{B}_Z = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\},$ respectively. Then $\mathcal{B}_{XY} = \mathcal{B}_X \cup \mathcal{B}_Y$ and $\mathcal{B}_{XZ} = \mathcal{B}_X \cup \mathcal{B}_Z$ are bases for \mathbb{R}^2 . In \mathbb{R}^2/X , the induced bases of \mathcal{B}_{XY} and \mathcal{B}_{XZ} are $\left\{ \begin{bmatrix} 0\\1 \end{bmatrix} + X \right\}$ and $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} + X \right\}$, respectively. These are equal because $\begin{bmatrix} 1\\1 \end{bmatrix} + X = \begin{bmatrix} 0\\1 \end{bmatrix} + \begin{bmatrix} 1\\0 \end{bmatrix} + X = \begin{bmatrix} 0\\1 \end{bmatrix} + X = \begin{bmatrix} 0\\1 \end{bmatrix} + X$.

2.4 Matrix Range, Null Space, Rank, and the Dimension Theorem

Definitions:

For any matrix $A \in F^{m \times n}$, the **range** of A, denoted by range(A), is the set of all linear combinations of the columns of A. If $A = [\mathbf{m}_1 \ \mathbf{m}_2 \ \dots \ \mathbf{m}_n]$, then range(A) = Span($\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_n$). The range of A is also called the **column space** of A.

The **row space** of *A*, denoted by RS(*A*), is the set of all linear combinations of the rows of *A*. If $A = [\mathbf{v}_1 \, \mathbf{v}_2 \, \dots \, \mathbf{v}_m]^T$, then RS(*A*) = Span($\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$).

The **kernel** of *A*, denoted by ker(*A*), is the set of all solutions to the homogeneous equation $A\mathbf{x} = \mathbf{0}$. The kernel of *A* is also called the **null space** of *A*, and its dimension is called the **nullity** of *A*, denoted by null(*A*).

The **rank** of *A*, denoted by rank(A), is the number of leading entries in the reduced row echelon form of *A* (or any row echelon form of *A*). (See Section 1.3 for more information.)

 $A, B \in F^{m \times n}$ are **equivalent** if $B = C_1^{-1}AC_2$ for some invertible matrices $C_1 \in F^{m \times m}$ and $C_2 \in F^{n \times n}$. $A, B \in F^{n \times n}$ are **similar** if $B = C^{-1}AC$ for some invertible matrix $C \in F^{n \times n}$. For square matrices $A_1 \in F^{n_1 \times n_1}, \ldots, A_k \in F^{n_k \times n_k}$, the **matrix direct sum** $A = A_1 \oplus \cdots \oplus A_k$ is the block diagonal matrix

with the matrices
$$A_i$$
 down the diagonal. That is, $A = \begin{bmatrix} A_1 & \mathbf{0} \\ & \ddots \\ \mathbf{0} & & A_k \end{bmatrix}$, where $A \in F^{n \times n}$ with $n = \sum_{i=1}^k n_i$.

Facts: Unless specified otherwise, the following facts can be found in [Lay03, Sections 2.8, 4.2, 4.5, and 4.6].

- 1. The range of an $m \times n$ matrix A is a subspace of F^m .
- 2. The columns of *A* corresponding to the pivot columns in the reduced row echelon form of *A* (or any row echelon form of *A*) give a basis for range(*A*). Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \in F^m$. If matrix $A = [\mathbf{v}_1 \mathbf{v}_2 \ldots \mathbf{v}_k]$, then a basis for range(*A*) will be a linearly independent subset of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ having the same span.
- 3. $\dim(\operatorname{range}(A)) = \operatorname{rank}(A)$.
- 4. The kernel of an $m \times n$ matrix A is a subspace of F^n .
- 5. If the reduced row echelon form of *A* (or any row echelon form of *A*) has *k* pivot columns, then null(A) = n k.
- 6. If two matrices *A* and *B* are row equivalent, then RS(A) = RS(B).
- 7. The row space of an $m \times n$ matrix A is a subspace of F^n .
- 8. The pivot rows in the reduced row echelon form of *A* (or any row echelon form of *A*) give a basis for RS(*A*).
- 9. $\dim(\mathrm{RS}(A)) = \mathrm{rank}(A)$.
- 10. $\operatorname{rank}(A) = \operatorname{rank}(A^T)$.
- 11. (Dimension Theorem) For any $A \in F^{m \times n}$, $n = \operatorname{rank}(A) + \operatorname{null}(A)$. Similarly, $m = \operatorname{dim}(\operatorname{RS}(A)) + \operatorname{null}(A^T)$.
- 12. A vector $\mathbf{b} \in F^m$ is in range(*A*) if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution. So range(*A*) = F^m if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every $\mathbf{b} \in F^m$.
- 13. A vector $\mathbf{a} \in F^n$ is in RS(A) if and only if the equation $A^T \mathbf{y} = \mathbf{a}$ has a solution. So RS(A) = F^n if and only if the equation $A^T \mathbf{y} = \mathbf{a}$ has a solution for every $\mathbf{a} \in F^n$.
- 14. If **a** is a solution to the equation $A\mathbf{x} = \mathbf{b}$, then $\mathbf{a} + \mathbf{v}$ is also a solution for any $\mathbf{v} \in \text{ker}(A)$.
- 15. [HJ85, p. 14] If $A \in F^{m \times n}$ is rank 1, then there are vectors $\mathbf{v} \in F^m$ and $\mathbf{u} \in F^n$ so that $A = \mathbf{v}\mathbf{u}^T$.
- 16. If $A \in F^{m \times n}$ is rank k, then A is a sum of k rank 1 matrices. That is, there exist A_1, \ldots, A_k with $A = A_1 + \cdots + A_k$ and rank $(A_i) = 1$, for $i = 1, \ldots, k$.
- 17. [HJ85, p. 13] The following are all equivalent statements about a matrix $A \in F^{m \times n}$.
 - (a) The rank of A is k.
 - (b) $\dim(\operatorname{range}(A)) = k$.
 - (c) The reduced row echelon form of *A* has *k* pivot columns.
 - (d) A row echelon form of A has k pivot columns.
 - (e) The largest number of linearly independent columns of *A* is *k*.
 - (f) The largest number of linearly independent rows of *A* is *k*.
- 18. [HJ85, p. 13] (Rank Inequalities) (Unless specified otherwise, assume that $A, B \in F^{m \times n}$.)
 - (a) $\operatorname{rank}(A) \leq \min(m, n)$.
 - (b) If a new matrix *B* is created by deleting rows and/or columns of matrix *A*, then rank(*B*) \leq rank(*A*).
 - (c) $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$.
 - (d) If A has a $p \times q$ submatrix of 0s, then rank $(A) \leq (m p) + (n q)$.

(e) If $A \in F^{m \times k}$ and $B \in F^{k \times n}$, then

 $\operatorname{rank}(A) + \operatorname{rank}(B) - k \le \operatorname{rank}(AB) \le \min\{\operatorname{rank}(A), \operatorname{rank}(B)\}.$

- 19. [HJ85, pp. 13-14] (Rank Equalities)
 - (a) If $A \in \mathbb{C}^{m \times n}$, then $\operatorname{rank}(A^*) = \operatorname{rank}(A^T) = \operatorname{rank}(\overline{A}) = \operatorname{rank}(A)$.
 - (b) If $A \in \mathbb{C}^{m \times n}$, then rank $(A^*A) = \operatorname{rank}(A)$. If $A \in \mathbb{R}^{m \times n}$, then rank $(A^TA) = \operatorname{rank}(A)$.
 - (c) Rank is unchanged by left or right multiplication by a nonsingular matrix. That is, if $A \in F^{n \times n}$ and $B \in F^{m \times m}$ are nonsingular, and $M \in F^{m \times n}$, then

rank(AM) = rank(M) = rank(MB) = rank(AMB).

- (d) If $A, B \in F^{m \times n}$, then rank $(A) = \operatorname{rank}(B)$ if and only if there exist nonsingular matrices $X \in F^{m \times m}$ and $Y \in F^{n \times n}$ such that A = XBY (i.e., if and only if A is equivalent to B).
- (e) If $A \in F^{m \times n}$ has rank k, then A = XBY, for some $X \in F^{m \times k}$, $Y \in F^{k \times n}$, and nonsingular $B \in F^{k \times k}$.
- (f) If $A_1 \in F^{n_1 \times n_1}, \ldots, A_k \in F^{n_k \times n_k}$, then $\operatorname{rank}(A_1 \oplus \cdots \oplus A_k) = \operatorname{rank}(A_1) + \cdots + \operatorname{rank}(A_k)$.
- 20. Let $A, B \in F^{n \times n}$ with A similar to B.
 - (a) A is equivalent to B.
 - (b) $\operatorname{rank}(A) = \operatorname{rank}(B)$.
 - (c) tr A =tr B.
- 21. Equivalence of matrices is an equivalence relation on $F^{m \times n}$.
- 22. Similarity of matrices is an equivalence relation on $F^{n \times n}$.

23. If $A \in F^{m \times n}$ and rank(A) = k, then A is equivalent to $\begin{bmatrix} I_k & 0\\ 0 & 0 \end{bmatrix}$, and so any two matrices of the

same size and rank are equivalent.

- 24. (For information on the determination of whether two matrices are similar, see Chapter 6.)
- 25. [Lay03, Sec. 6.1] If $A \in \mathbb{R}^{n \times n}$, then for any $\mathbf{x} \in RS(A)$ and any $\mathbf{y} \in ker(A)$, $\mathbf{x}^T \mathbf{y} = 0$. So the row space and kernel of a real matrix are orthogonal to one another. (See Chapter 5 for more on orthogonality.)

Examples:

1. If
$$A = \begin{bmatrix} 1 & 7 & -2 \\ 0 & -1 & 1 \\ 2 & 13 & -3 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$
, then any vector of the form $\begin{bmatrix} a + 7b - 2c \\ -b + c \\ 2a + 13b - 3c \end{bmatrix} \left(= \begin{bmatrix} 1 & 7 & -2 \\ 0 & -1 & 1 \\ 2 & 13 & -3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} \right)$

is in range(A), for any $a, b, c \in \mathbb{R}$. Since a row echelon form of A is $\begin{vmatrix} 1 & 7 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{vmatrix}$, we know that

the set
$$\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 7\\-1\\13 \end{bmatrix} \right\}$$
 is a basis for range(A), and the set $\left\{ \begin{bmatrix} 1\\7\\-2 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$ is a basis for RS(A). Since its reduced row echelon form is $\begin{bmatrix} 1&0&5\\0&1&-1\\0&0&0 \end{bmatrix}$, the set $\left\{ \begin{bmatrix} 1\\0\\5 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$ is another

basis for RS(A).

2. If $A = \begin{bmatrix} 1 & 7 & -2 \\ 0 & -1 & 1 \\ 2 & 13 & -3 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$, then using the reduced row echelon form given in the previ-

ous example, solutions to $A\mathbf{x} = \mathbf{0}$ have the form $\mathbf{x} = c \begin{bmatrix} -5\\1\\1 \end{bmatrix}$, for any $c \in \mathbb{R}$. So ker(A) =

Span
$$\left(\begin{bmatrix} -5\\1\\1 \end{bmatrix} \right)$$
.

3. If $A \in \mathbb{R}^{3 \times 5}$ has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 3 & 0 & 2 \\ 0 & 1 & -2 & 0 & 7 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$, then any solution to

 $A\mathbf{x} = \mathbf{0}$ has the form

$$\mathbf{x} = c_1 \begin{bmatrix} -3\\2\\1\\0\\0 \end{bmatrix} + c_2 \begin{bmatrix} -2\\-7\\0\\1\\1 \end{bmatrix}$$

for some $c_1, c_2 \in \mathbb{R}$. So,

$$\ker(A) = \operatorname{Span}\left(\begin{bmatrix} -3\\2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -2\\-7\\0\\1\\1 \end{bmatrix} \right).$$

4. Example 1 above shows that $\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 7\\-1\\13 \end{bmatrix} \right\}$ is a linearly independent set having the same span

as the set
$$\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 7\\-1\\13 \end{bmatrix}, \begin{bmatrix} -2\\1\\-3 \end{bmatrix} \right\}$$
.
5. $\begin{bmatrix} 1&7\\2&-3 \end{bmatrix}$ is similar to $\begin{bmatrix} 37&-46\\31&-39 \end{bmatrix}$ because $\begin{bmatrix} 37&-46\\31&-39 \end{bmatrix} = \begin{bmatrix} -2&3\\3&-4 \end{bmatrix}^{-1} \begin{bmatrix} 1&7\\2&-3 \end{bmatrix} \begin{bmatrix} -2&3\\3&-4 \end{bmatrix}$.

2.5 Nonsingularity Characterizations

From the previous discussion, we can add to the list of nonsingularity characterizations of a square matrix that was started in the previous chapter.

Facts: The following facts can be found in [HJ85, p. 14] or [Lay03, Sections 2.3 and 4.6].

- 1. If $A \in F^{n \times n}$, then the following are equivalent.
 - (a) A is nonsingular.
 - (b) The columns of A are linearly independent.
 - (c) The dimension of range(A) is *n*.

- (d) The range of A is F^n .
- (e) The equation $A\mathbf{x} = \mathbf{b}$ is consistent for each $\mathbf{b} \in F^n$.
- (f) If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then the solution is unique.
- (g) The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for each $\mathbf{b} \in F^n$.
- (h) The rows of A are linearly independent.
- (i) The dimension of RS(A) is *n*.
- (j) The row space of A is F^n .
- (k) The dimension of ker(A) is 0.
- (1) The only solution to $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$.
- (m) The rank of A is n.
- (n) The determinant of A is nonzero. (See Section 4.1 for the definition of the determinant.)

2.6 Coordinates and Change of Basis

Coordinates are used to transform a problem in a more abstract vector space (e.g., the vector space of polynomials of degree less than or equal to 3) to a problem in F^n .

Definitions:

Suppose that $\mathcal{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n)$ is an ordered basis for a vector space *V* over a field *F* and $\mathbf{x} \in V$. The **coordinates of x relative to the ordered basis** \mathcal{B} (or the \mathcal{B} -coordinates of \mathbf{x}) are the scalar coefficients $c_1, c_2, \dots, c_n \in F$ such that $\mathbf{x} = c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_n\mathbf{x}_n$. Whenever coordinates are involved, the vector space is assumed to be nonzero and finite dimensional.

If c_1, c_2, \ldots, c_n are the \mathcal{B} -coordinates of **x**, then the vector in F^n ,

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix},$$

is the coordinate vector of x relative to B or the B-coordinate vector of x.

The mapping $\mathbf{x} \to [\mathbf{x}]_{\mathcal{B}}$ is the **coordinate mapping determined by** \mathcal{B} .

If \mathcal{B} and \mathcal{B}' are ordered bases for the vector space F^n , then the **change-of-basis matrix** from \mathcal{B} to \mathcal{B}' is the matrix whose columns are the \mathcal{B}' -coordinate vectors of the vectors in \mathcal{B} and is denoted by $_{\mathcal{B}'}[I]_{\mathcal{B}}$. Such a matrix is also called a **transition matrix**.

Facts: The following facts can be found in [Lay03, Sections 4.4 and 4.7] or [HJ85, Section 0.10]:

- 1. For any vector $\mathbf{x} \in F^n$ with the standard ordered basis $\mathcal{E}_n = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$, we have $\mathbf{x} = [\mathbf{x}]_{\mathcal{E}_n}$.
- 2. For any ordered basis $\mathcal{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a vector space *V*, we have $[\mathbf{b}_i]_{\mathcal{B}} = \mathbf{e}_i$.
- 3. If $\dim(V) = n$, then the coordinate mapping is a one-to-one linear transformation from V onto F^n . (See Chapter 3 for the definition of linear transformation.)
- 4. If \mathcal{B} is an ordered basis for a vector space V and $\mathbf{v}_1, \mathbf{v}_2 \in V$, then $\mathbf{v}_1 = \mathbf{v}_2$ if and only if $[\mathbf{v}_1]_{\mathcal{B}} = [\mathbf{v}_2]_{\mathcal{B}}$.
- 5. Let *V* be a vector space over a field *F*, and suppose \mathcal{B} is an ordered basis for *V*. Then for any $\mathbf{x}, \mathbf{v}_1, \ldots, \mathbf{v}_k \in V$ and $c_1, \ldots, c_k \in F, \mathbf{x} = c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k$ if and only if $[\mathbf{x}]_{\mathcal{B}} = c_1 [\mathbf{v}_1]_{\mathcal{B}} + \cdots + c_k [\mathbf{v}_k]_{\mathcal{B}}$. So, for any $\mathbf{x}, \mathbf{v}_1, \ldots, \mathbf{v}_k \in V, \mathbf{x} \in \text{Span}(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ if and only if $[\mathbf{x}]_{\mathcal{B}} \in \text{Span}([\mathbf{v}_1]_{\mathcal{B}}, \ldots, [\mathbf{v}_k]_{\mathcal{B}})$.
- 6. Suppose \mathcal{B} is an ordered basis for an *n*-dimensional vector space *V* over a field *F* and $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V$. The set $S = {\mathbf{v}_1, \ldots, \mathbf{v}_k}$ is linearly independent in *V* if and only if the set $S' = {[\mathbf{v}_1]_{\mathcal{B}}, \ldots, [\mathbf{v}_k]_{\mathcal{B}}}$ is linearly independent in F^n .

- 7. Let *V* be a vector space over a field *F* with dim(*V*) = *n*, and suppose \mathcal{B} is an ordered basis for *V*. Then Span($\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$) = *V* for some $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \in V$ if and only if Span($[\mathbf{v}_1]_{\mathcal{B}}, [\mathbf{v}_2]_{\mathcal{B}}, \ldots, [\mathbf{v}_k]_{\mathcal{B}}$) = F^n .
- 8. Suppose \mathcal{B} is an ordered basis for a vector space V over a field F with dim(V) = n, and let $S = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$ be a subset of V. Then S is a basis for V if and only if ${[\mathbf{v}_1]_{\mathcal{B}}, \ldots, [\mathbf{v}_n]_{\mathcal{B}}}$ is a basis for F^n if and only if the matrix $[[\mathbf{v}_1]_{\mathcal{B}}, \ldots, [\mathbf{v}_n]_{\mathcal{B}}]$ is invertible.
- 9. If \mathcal{B} and \mathcal{B}' are ordered bases for a vector space V, then $[\mathbf{x}]_{\mathcal{B}'} = {}_{\mathcal{B}'}[I]_{\mathcal{B}} [\mathbf{x}]_{\mathcal{B}}$ for any $\mathbf{x} \in V$. Furthermore, ${}_{\mathcal{B}'}[I]_{\mathcal{B}}$ is the only matrix such that for any $\mathbf{x} \in V$, $[\mathbf{x}]_{\mathcal{B}'} = {}_{\mathcal{B}'}[I]_{\mathcal{B}} [\mathbf{x}]_{\mathcal{B}}$.
- 10. Any change-of-basis matrix is invertible.
- 11. If *B* is invertible, then *B* is a change-of-basis matrix. Specifically, if $B = [\mathbf{b}_1 \cdots \mathbf{b}_n] \in F^{n \times n}$, then $B = \mathcal{E}_n[I]_{\mathcal{B}}$, where $\mathcal{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ is an ordered basis for F^n .
- 12. If $\mathcal{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ is an ordered basis for F^n , then $\mathcal{E}_n[I]_{\mathcal{B}} = [\mathbf{b}_1 \cdots \mathbf{b}_n]$.
- 13. If \mathcal{B} and \mathcal{B}' are ordered bases for a vector space *V*, then $_{\mathcal{B}}[I]_{\mathcal{B}'} = (_{\mathcal{B}'}[I]_{\mathcal{B}})^{-1}$.
- 14. If \mathcal{B} and \mathcal{B}' are ordered bases for F^n , then $_{\mathcal{B}'}[I]_{\mathcal{B}} = (_{\mathcal{B}'}[I]_{\mathcal{E}_n})(_{\mathcal{E}_n}[I]_{\mathcal{B}})$.

Examples:

- 1. If $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in F[x; n]$ with the standard ordered basis $\mathcal{B} = (1, x, x^2, \dots, x^n), \text{ then } [p(x)]_{\mathcal{B}} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix}.$ $\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \right)$
- 2. The set $\mathcal{B} = \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \end{bmatrix} \right)$ forms an ordered basis for \mathbb{R}^2 . If \mathcal{E}_2 is the standard ordered basis

for \mathbb{R}^2 , then the change-of-basis matrix from \mathcal{B} to \mathcal{E}_2 is $_{\mathcal{E}_2}[T]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 \\ -1 & 3 \end{bmatrix}$, and $(_{\mathcal{E}_2}[T]_{\mathcal{B}})^{-1} = \begin{bmatrix} 1 & 0 \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$. So for $\mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ in the standard ordered basis, we find that $[\mathbf{v}]_{\mathcal{B}} = (_{\mathcal{E}_2}[T]_{\mathcal{B}})^{-1}\mathbf{v} = \begin{bmatrix} 3 \\ \frac{4}{3} \end{bmatrix}$. To check this, we can easily see that $\mathbf{v} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} = 3\begin{bmatrix} 1 \\ -1 \end{bmatrix} + 4\begin{bmatrix} 0 \\ -1 \end{bmatrix}$.

To check this, we can easily see that $\mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \frac{4}{3} \begin{bmatrix} 0 \\ 3 \end{bmatrix}$.

3. The set $\mathcal{B}' = (1, 1 + x, 1 + x^2)$ is an ordered basis for $\mathbb{R}[x; 2]$, and using the standard ordered basis

$$\mathcal{B} = (1, x, x^2) \text{ for } \mathbb{R}[x; 2] \text{ we have }_{\mathcal{B}}[P]_{\mathcal{B}'} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \text{ So, } (\mathcal{B}[P]_{\mathcal{B}'})^{-1} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and $[5 - 2x + 3x^2]_{B'} = ({}_{B}[P]_{B'})^{-1} \begin{bmatrix} 5\\ -2\\ 3 \end{bmatrix} = \begin{bmatrix} 4\\ -2\\ 3 \end{bmatrix}$. Of course, we can see $5 - 2x + 3x^2 = 4(1) - 2(1+x) + 3(1+x^2)$.

4. If we want to change from the ordered basis $\mathcal{B}_1 = \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \end{bmatrix} \right)$ in \mathbb{R}^2 to the ordered basis $\mathcal{B}_2 = \left(\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ 0 \end{bmatrix} \right)$, then the resulting change-of-basis matrix is $_{\mathcal{B}_2}[T]_{\mathcal{B}_1} = (_{\mathcal{E}_2}[T]_{\mathcal{B}_2})^{-1}(_{\mathcal{E}_2}[T]_{\mathcal{B}_1}) = \begin{bmatrix} 2 & 5 \\ 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ \frac{3}{5} & -\frac{6}{5} \end{bmatrix}$.

5. Let $S = \{5 - 2x + 3x^2, 3 - x + 2x^2, 8 + 3x\}$ in $\mathbb{R}[x; 2]$ with the standard ordered basis $\mathcal{B} =$ (1, x, x²). The matrix $A = \begin{bmatrix} 5 & 3 & 8 \\ -2 & -1 & 3 \\ 3 & 2 & 0 \end{bmatrix}$ contains the \mathcal{B} -coordinate vectors for the polynomials in S and it has row echelon form $\begin{bmatrix} 5 & 3 & 8 \\ 0 & 1 & 31 \\ 0 & 0 & 1 \end{bmatrix}$. Since this row echelon form shows that A is

nonsingular, we know by Fact 8 above that *S* is a basis for $\mathbb{R}[x; 2]$.

Idempotence and Nilpotence 2.7

Definitions:

A is an **idempotent** if $A^2 = A$.

A is **nilpotent** if, for some $k \ge 0$, $A^k = 0$.

Facts: All of the following facts except those with a specific reference are immediate from the definitions.

- 1. Every idempotent except the identity matrix is singular.
- 2. Let $A \in F^{n \times n}$. The following statements are equivalent.
 - (a) A is an idempotent.
 - (b) I A is an idempotent.
 - (c) If $\mathbf{v} \in \operatorname{range}(A)$, then $A\mathbf{v} = \mathbf{v}$.
 - (d) $F^n = \ker A \oplus \operatorname{range} A$.

(e) [HJ85, p. 37 and p. 148] *A* is similar to $\begin{bmatrix} I_k & 0\\ 0 & 0 \end{bmatrix}$, for some $k \le n$.

- 3. If A_1 and A_2 are idempotents of the same size and commute, then A_1A_2 is an idempotent.
- 4. If A_1 and A_2 are idempotents of the same size and $A_1A_2 = A_2A_1 = 0$, then $A_1 + A_2$ is an idempotent.
- 5. If $A \in F^{n \times n}$ is nilpotent, then $A^n = 0$.
- 6. If A is nilpotent and B is of the same size and commutes with A, then AB is nilpotent.
- 7. If A_1 and A_2 are nilpotent matrices of the same size and $A_1A_2 = A_2A_1 = 0$, then $A_1 + A_2$ is nilpotent.

Examples:

1.
$$\begin{bmatrix} -8 & 12 \\ -6 & 9 \end{bmatrix}$$
 is an idempotent. $\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$ is nilpotent.

References

[Lay03] D. C. Lay. Linear Algebra and Its Applications, 3rd ed. Addison-Wesley, Reading, MA, 2003. [HK71] K. H. Hoffman and R. Kunze. Linear Algebra, 2nd ed. Prentice-Hall, Upper Saddle River, NJ, 1971. [HJ85] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.