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2.1 Span and Linear Independence

Let V be a vector space over a field F .

Definitions:

A linear combination of the vectors v1, v2, . . . , vk ∈ V is a sum of scalar multiples of these vectors; that is,
c1v1 + c2v2 +· · ·+ ck vk , for some scalar coefficients c1, c2, . . . , ck ∈ F . If S is a set of vectors in V , a linear
combination of vectors in S is a vector of the form c1v1 + c2v2 + · · · + ck vk with k ∈ N, vi ∈ S, ci ∈ F .
Note that S may be finite or infinite, but a linear combination is, by definition, a finite sum. The zero
vector is defined to be a linear combination of the empty set.

When all the scalar coefficients in a linear combination are 0, it is a trivial linear combination. A sum
over the empty set is also a trivial linear combination.

The span of the vectors v1, v2, . . . , vk ∈ V is the set of all linear combinations of these vectors, denoted
by Span(v1, v2, . . . , vk). If S is a (finite or infinite) set of vectors in V, then the span of S, denoted by
Span(S), is the set of all linear combinations of vectors in S.

If V = Span(S), then S spans the vector space V .
A (finite or infinite) set of vectors S in V is linearly independent if the only linear combination of

distinct vectors in S that produces the zero vector is a trivial linear combination. That is, if vi are distinct
vectors in S and c1v1 + c2v2 + · · · + ck vk = 0, then c1 = c2 = · · · = ck = 0. Vectors that are not
linearly independent are linearly dependent. That is, there exist distinct vectors v1, v2, . . . , vk ∈ S and
c1, c2, . . . , ck not all 0 such that c1v1 + c2v2 + · · · + ck vk = 0.
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Facts: The following facts can be found in [Lay03, Sections 4.1 and 4.3].

1. Span(∅) = {0}.
2. A linear combination of a single vector v is simply a scalar multiple of v.
3. In a vector space V , Span(v1, v2, . . . , vk) is a subspace of V .
4. Suppose the set of vectors S = {v1, v2, . . . , vk} spans the vector space V . If one of the vectors, say

vi , is a linear combination of the remaining vectors, then the set formed from S by removing vi

still spans V .
5. Any single nonzero vector is linearly independent.
6. Two nonzero vectors are linearly independent if and only if neither is a scalar multiple of the other.
7. If S spans V and S ⊆ T , then T spans V .
8. If T is a linearly independent subset of V and S ⊆ T , then S is linearly independent.
9. Vectors v1, v2, . . . , vk are linearly dependent if and only if vi = c1v1 + · · · + ci−1vi−1 + ci+1vi+1

+ · · · + ck vk , for some 1 ≤ i ≤ k and some scalars c1, . . . , ci−1, ci+1, . . . , ck . A set S of vectors in
V is linearly dependent if and only if there exists v ∈ S such that v is a linear combination of other
vectors in S.

10. Any set of vectors that includes the zero vector is linearly dependent.

Examples:

1. Linear combinations of

[
1

−1

]

,

[
0

3

]

∈ R
2 are vectors of the form c1

[
1

−1

]

+ c2

[
0

3

]

=
[

c1

−c1 + 3c2

]

,

for any scalars c1, c2 ∈ R. Any vector of this form is in Span

( [
1

−1

]

,

[
0

3

] )

. In fact,

Span

( [
1

−1

]

,

[
0

3

])

= R
2 and these vectors are linearly independent.

2. If v ∈ R
n and v �= 0, then geometrically Span(v) is a line in R

n through the origin.
3. Suppose n ≥ 2 and v1, v2 ∈ R

n are linearly independent vectors. Then geometrically Span(v1, v2) is
a plane in R

n through the origin.
4. Any polynomial p(x) ∈ R[x] of degree less than or equal to 2 can easily be seen to be a linear

combination of 1, x , and x2. However, p(x) is also a linear combination of 1, 1 + x , and 1 + x2. So
Span(1, x , x2) = Span(1, 1 + x , 1 + x2) = R[x ; 2].

5. The n vectors e1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, e2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, . . . , en =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0
...

0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

span F n, for any field F . These vectors are

also linearly independent.

6. In R
2,

[
1

−1

]

and

[
0

3

]

are linearly independent. However,

[
1

−1

]

,

[
0

3

]

, and

[
1

5

]

are linearly

dependent, because

[
1

5

]

=
[

1

−1

]

+ 2

[
0

3

]

.

7. The infinite set {1, x , x2, . . . , xn, . . .} is linearly independent in F [x], for any field F .
8. In the vector space of continuous real-valued functions on the real line, C(R), the set {sin(x), sin(2x),

. . . , sin(nx), cos(x), cos(2x), . . . , cos(nx)} is linearly independent for any n ∈ N. The infinite
set {sin(x), sin(2x), . . . , sin(nx), . . . , cos(x), cos(2x), . . . , cos(nx), . . .} is also linearly independent
in C(R).
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Applications:

1. The homogeneous differential equation
d2 y

dx2
− 3

dy

dx
+ 2y = 0 has as solutions y1(x) = e2x and

y2(x) = e x . Any linear combination y(x) = c1 y1(x) + c2 y2(x) is a solution of the differential
equation, and so Span(e2x , e x ) is contained in the set of solutions of the differential equation
(called the solution space for the differential equation). In fact, the solution space is spanned by
e2x and e x , and so is a subspace of the vector space of functions. In general, the solution space
for a homogeneous differential equation is a vector space, meaning that any linear combination of
solutions is again a solution.

2.2 Basis and Dimension of a Vector Space

Let V be a vector space over a field F .

Definitions:

A set of vectors B in a vector space V is a basis for V if

� B is a linearly independent set, and
� Span(B) = V .

The set En =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, e2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, . . . , en =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0
...

0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

is the standard basis for F n.

The number of vectors in a basis for a vector space V is the dimension of V , denoted by dim(V). If a
basis for V contains a finite number of vectors, then V is finite dimensional. Otherwise, V is infinite
dimensional, and we write dim(V) = ∞.

Facts: All the following facts, except those with a specific reference, can be found in [Lay03, Sections 4.3

and 4.5].
1. Every vector space has a basis.
2. The standard basis for F n is a basis for F n, and so dim F n = n.
3. A basis B in a vector space V is the largest set of linearly independent vectors in V that contains B,

and it is the smallest set of vectors in V that contains B and spans V .
4. The empty set is a basis for the trivial vector space {0}, and dim({0}) = 0.
5. If the set S = {v1, . . . , vp} spans a vector space V , then some subset of S forms a basis for V . In

particular, if one of the vectors, say vi , is a linear combination of the remaining vectors, then the
set formed from S by removing vi will be “closer” to a basis for V . This process can be continued
until the remaining vectors form a basis for V .

6. If S is a linearly independent set in a vector space V , then S can be expanded, if necessary, to a basis
for V .

7. No nontrivial vector space over a field with more than two elements has a unique basis.
8. If a vector space V has a basis containing n vectors, then every basis of V must contain n vectors.

Similarly, if V has an infinite basis, then every basis of V must be infinite. So the dimension of V
is unique.

9. Let dim(V) = n and let S be a set containing n vectors. The following are equivalent:
� S is a basis for V .
� S spans V .
� S is linearly independent.
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10. If dim(V) = n, then any subset of V containing more than n vectors is linearly dependent.
11. If dim(V) = n, then any subset of V containing fewer than n vectors does not span V .
12. [Lay03, Section 4.4] If B = {b1, . . . , bp} is a basis for a vector space V , then each x ∈ V can be

expressed as a unique linear combination of the vectors in B. That is, for each x ∈ V there is a
unique set of scalars c1, c2, . . . , c p such that x = c1b1 + c2b2 + · · · + c pbp .

Examples:

1. In R
2,

[
1

−1

]

and

[
0

3

]

are linearly independent, and they span R
2. So they form a basis for R

2 and

dim(R2) = 2.
2. In F [x], the set {1, x , x2, . . . , xn} is a basis for F [x ; n] for any n ∈ N. The infinite set {1, x , x2, x3, . . .}

is a basis for F [x], meaning dim(F [x]) = ∞.
3. The set of m × n matrices E ij having a 1 in the i, j -entry and zeros everywhere else forms a basis

for F m×n. Since there are mn such matrices, dim(F m×n) = mn.

4. The set S =
{[

1

0

]

,

[
0

1

]

,

[
1

2

]}

clearly spans R
2, but it is not a linearly independent set. However,

removing any single vector from S will cause the remaining vectors to be a basis for R
2, because

any pair of vectors is linearly independent and still spans R
2.

5. The set S =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

1

1

0

0

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

0

0

1

1

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

is linearly independent, but it cannot be a basis for R
4 since it does

not span R
4. However, we can start expanding it to a basis for R

4 by first adding a vector that is not

in the span of S, such as

⎡

⎢
⎢
⎢
⎣

1

0

0

0

⎤

⎥
⎥
⎥
⎦

. Then since these three vectors still do not span R
4, we can add a

vector that is not in their span, such as

⎡

⎢
⎢
⎢
⎣

0

0

1

0

⎤

⎥
⎥
⎥
⎦

. These four vectors now span R
4 and they are linearly

independent, so they form a basis for R
4.

6. Additional techniques for determining whether a given finite set of vectors is linearly independent
or spans a given subspace can be found in Sections 2.5 and 2.6.

Applications:

1. Because y1(x) = e2x and y2(x) = e x are linearly independent and span the solution space for the

homogeneous differential equation
d2 y

dx2
− 3

dy

dx
+ 2y = 0, they form a basis for the solution space

and the solution space has dimension 2.

2.3 Direct Sum Decompositions

Throughout this section, V will be a vector space over a field F , and Wi , for i = 1, . . . , k, will be subspaces
of V . For facts and general reading for this section, see [HK71].
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Definitions:

The sum of subspaces Wi , for i = 1, . . . , k, is
∑k

i=1 Wi = W1 + · · · + Wk = {w1 + · · · + wk | wi ∈ Wi }.
The sum W1 + · · · + Wk is a direct sum if for all i = 1, . . . , k, we have Wi ∩ ∑

j �=i Wj = {0}.
W = W1 ⊕ · · · ⊕ Wk denotes that W = W1 + · · · + Wk and the sum is direct. The subspaces Wi ,
for i = i, . . . , k, are independent if for wi ∈ Wi , w1 +· · ·+wk = 0 implies wi = 0 for all i = 1, . . . , k. Let
Vi , for i = 1, . . . , k, be vector spaces over F . The external direct sum of the Vi , denoted V1 × · · · × Vk , is
the cartesian product of Vi , for i = 1, . . . , k, with coordinate-wise operations. Let W be a subspace of V .
An additive coset of W is a subset of the form v +W = {v +w | w ∈ W} with v ∈ V . The quotient of V by
W, denoted V/W, is the set of additive cosets of W with operations (v1 + W)+ (v2 + W) = (v1 + v2)+ W
and c(v + W) = (cv) + W, for any c ∈ F . Let V = W ⊕ U , let BW and BU be bases for W and U
respectively, and let B = BW ∪BU . The induced basis of B in V/W is the set of vectors {u + W | u ∈ BU }.

Facts:

1. W = W1 ⊕ W2 if and only if W = W1 + W2 and W1 ∩ W2 = {0}.
2. If W is a subspace of V , then there exists a subspace U of V such that V = W ⊕ U . Note that U is

not usually unique.
3. Let W = W1 + · · · + Wk . The following are equivalent:

� W = W1 ⊕ · · · ⊕ Wk . That is, for all i = 1, . . . , k, we have Wi ∩ ∑
j �=i Wj = {0}.

� Wi ∩ ∑i−1
j=1 Wj = {0}, for all i = 2, . . . , k.

� For each w ∈ W, w can be expressed in exactly one way as a sum of vectors in W1, . . . , Wk . That
is, there exist unique wi ∈ Wi , such that w = w1 + · · · + wk .

� The subspaces Wi , for i = 1, . . . , k, are independent.
� If Bi is an (ordered) basis for Wi , then B = ⋃k

i=1 Bi is an (ordered) basis for W.

4. If B is a basis for V and B is partitioned into disjoint subsets Bi , for i = 1, . . . , k, then
V = Span(B1) ⊕ · · · ⊕ Span(Bk).

5. If S is a linearly independent subset of V and S is partitioned into disjoint subsets Si , for i = 1, . . . , k,
then the subspaces Span(S1), . . . , Span(Sk) are independent.

6. If V is finite dimensional and V = W1 + · · · + Wk , then dim(V) = dim(W1) + · · · + dim(Wk) if
and only if V = W1 ⊕ · · · ⊕ Wk .

7. Let Vi , for i = 1, . . . , k, be vector spaces over F .

� V1 × · · · × Vk is a vector space over F .
� V̂i = {(0, . . . , 0, vi , 0, . . . , 0) | vi ∈ Vi } (where vi is the i th coordinate) is a subspace of

V1 × · · · × Vk .
� V1 × · · · × Vk = V̂1 ⊕ · · · ⊕ V̂k .
� If Vi , for i = 1, . . . , k, are finite dimensional, then dim V̂i = dim Vi and dim(V1 × · · · × Vk) =

dim V1 + · · · + dim Vk .

8. If W is a subspace of V , then the quotient V/W is a vector space over F .
9. Let V = W ⊕ U , let BW and BU be bases for W and U respectively, and let B = BW ∪ BU . The

induced basis of B in V/W is a basis for V/W and dim(V/W) = dim U .

Examples:

1. Let B = {v1, . . . , vn} be a basis for V . Then V = Span(v1) ⊕ · · · ⊕ Span(vn).

2. Let X =
{[

x

0

]

| x ∈ R

}

, Y =
{[

0

y

]

| y ∈ R

}

, and Z =
{[

z

z

]

| z ∈ R

}

. Then R
2 =

X ⊕ Y = Y ⊕ Z = X ⊕ Z.
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3. In F n×n, let W1 be the subspace of symmetric matrices and W2 be the subspace of skew-symmetric

matrices. Clearly, W1 ∩ W2 = {0}. For any A ∈ F n×n, A = A + AT

2
+ A − AT

2
, where

A + AT

2
∈

W1 and
A − AT

2
∈ W2. Therefore, F n×n = W1 ⊕ W2.

4. Recall that the function f ∈ C(R) is even if f (−x) = f (x) for all x , and f is odd if f (−x) = − f (x)
for all x . Let W1 be the subspace of even functions and W2 be the subspace of odd functions.

Clearly, W1 ∩ W2 = {0}. For any f ∈ C(R), f = f1 + f2, where f1(x) = f (x) + f (−x)

2
∈ W1

and f1(x) = f (x) − f (−x)

2
∈ W2. Therefore, C(R) = W1 ⊕ W2.

5. Given a subspace W of V , we can find a subspace U such that V = W ⊕ U by choosing a basis
for W, extending this linearly independent set to a basis for V , and setting U equal to the span of

the basis vectors not in W. For example, in R
3, Let W =

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

a

−2a

a

⎤

⎥
⎦ | a ∈ R

⎫
⎪⎬

⎪⎭
. If w =

⎡

⎢
⎣

1

−2

1

⎤

⎥
⎦,

then {w} is a basis for W. Extend this to a basis for R
3, for example by adjoining e1 and e2. Thus,

V = W ⊕ U , where U = Span(e1, e2). Note: there are many other ways to extend the basis, and
many other possible U .

6. In the external direct sum R[x ; 2] × R
2×2,

(

2x2 + 7,

[
1 2

3 4

])

+ 3

(

x2 + 4x − 2,

[
0 1

−1 0

])

=
(

5x2 + 12x + 1,

[
1 5

0 4

])

.

7. The subspaces X, Y, Z of R
2 in Example 2 have bases BX =

{[
1

0

]}

,BY =
{[

0

1

]}

,BZ =
{[

1

1

]}

, respectively. Then BXY = BX ∪ BY and BX Z = BX ∪ BZ are bases for R
2. In R

2/X , the

induced bases of BXY and BX Z are

{[
0

1

]

+ X

}

and

{[
1

1

]

+ X

}

, respectively. These are equal

because

[
1

1

]

+ X =
[

0

1

]

+
[

1

0

]

+ X =
[

0

1

]

+ X .

2.4 Matrix Range, Null Space, Rank,
and the Dimension Theorem

Definitions:

For any matrix A ∈ F m×n, the range of A, denoted by range(A), is the set of all linear combinations of
the columns of A. If A = [m1 m2 . . . mn], then range(A) = Span(m1, m2, . . . , mn). The range of A is
also called the column space of A.

The row space of A, denoted by RS(A), is the set of all linear combinations of the rows of A. If
A = [v1 v2 . . . vm]T , then RS(A) = Span(v1, v2, . . . , vm).

The kernel of A, denoted by ker(A), is the set of all solutions to the homogeneous equation Ax = 0.
The kernel of A is also called the null space of A, and its dimension is called the nullity of A, denoted by
null(A).

The rank of A, denoted by rank(A), is the number of leading entries in the reduced row echelon form
of A (or any row echelon form of A). (See Section 1.3 for more information.)
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A, B ∈ F m×n are equivalent if B = C−1
1 AC2 for some invertible matrices C1 ∈ F m×m and C2 ∈ F n×n.

A, B ∈ F n×n are similar if B = C−1 AC for some invertible matrix C ∈ F n×n. For square matrices
A1 ∈ F n1×n1 , . . . , Ak ∈ F nk×nk, the matrix direct sum A = A1 ⊕ · · · ⊕ Ak is the block diagonal matrix

with the matrices Ai down the diagonal. That is, A =

⎡

⎢
⎢
⎣

A1 0
. . .

0 Ak

⎤

⎥
⎥
⎦, where A ∈ F n×n with n =

k∑

i=1

ni .

Facts: Unless specified otherwise, the following facts can be found in [Lay03, Sections 2.8, 4.2, 4.5,

and 4.6].

1. The range of an m × n matrix A is a subspace of F m.
2. The columns of A corresponding to the pivot columns in the reduced row echelon form of A

(or any row echelon form of A) give a basis for range(A). Let v1, v2, . . . , vk ∈ F m. If matrix
A = [v1 v2 . . . vk], then a basis for range(A) will be a linearly independent subset of v1, v2, . . . , vk

having the same span.
3. dim(range(A)) = rank(A).
4. The kernel of an m × n matrix A is a subspace of F n.
5. If the reduced row echelon form of A (or any row echelon form of A) has k pivot columns, then

null(A) = n − k.
6. If two matrices A and B are row equivalent, then RS(A) = RS(B).
7. The row space of an m × n matrix A is a subspace of F n.
8. The pivot rows in the reduced row echelon form of A (or any row echelon form of A) give a basis

for RS(A).
9. dim(RS(A)) = rank(A).

10. rank(A) = rank(AT ).
11. (Dimension Theorem) For any A ∈ F m×n, n = rank(A) + null(A). Similarly, m = dim(RS(A)) +

null(AT ).
12. A vector b ∈ F m is in range(A) if and only if the equation Ax = b has a solution. So range(A) = F m

if and only if the equation Ax = b has a solution for every b ∈ F m.
13. A vector a ∈ F n is in RS(A) if and only if the equation AT y = a has a solution. So RS(A) = F n if

and only if the equation AT y = a has a solution for every a ∈ F n.
14. If a is a solution to the equation Ax = b, then a + v is also a solution for any v ∈ ker(A).
15. [HJ85, p. 14] If A ∈ F m×n is rank 1, then there are vectors v ∈ F m and u ∈ F n so that A = vuT .
16. If A ∈ F m×n is rank k, then A is a sum of k rank 1 matrices. That is, there exist A1, . . . , Ak with

A = A1 + · · · + Ak and rank(Ai ) = 1, for i = 1, . . . , k.
17. [HJ85, p. 13] The following are all equivalent statements about a matrix A ∈ F m×n.

(a) The rank of A is k.

(b) dim(range(A)) = k.

(c) The reduced row echelon form of A has k pivot columns.

(d) A row echelon form of A has k pivot columns.

(e) The largest number of linearly independent columns of A is k.

(f) The largest number of linearly independent rows of A is k.

18. [HJ85, p. 13] (Rank Inequalities) (Unless specified otherwise, assume that A, B ∈ F m×n.)

(a) rank(A) ≤ min(m, n).

(b) If a new matrix B is created by deleting rows and/or columns of matrix A, then rank(B) ≤
rank(A).

(c) rank(A + B) ≤ rank(A) + rank(B).

(d) If A has a p × q submatrix of 0s, then rank(A) ≤ (m − p) + (n − q).
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(e) If A ∈ F m×k and B ∈ F k×n, then

rank(A) + rank(B) − k ≤ rank(AB) ≤ min{rank(A), rank(B)}.

19. [HJ85, pp. 13–14] (Rank Equalities)

(a) If A ∈ C
m×n, then rank(A∗) = rank(AT ) = rank(A) = rank(A).

(b) If A ∈ C
m×n, then rank(A∗ A) = rank(A). If A ∈ R

m×n, then rank(AT A) = rank(A).

(c) Rank is unchanged by left or right multiplication by a nonsingular matrix. That is, if A ∈ F n×n

and B ∈ F m×m are nonsingular, and M ∈ F m×n, then

rank(AM) = rank(M) = rank(MB) = rank(AMB).

(d) If A, B ∈ F m×n, then rank(A) = rank(B) if and only if there exist nonsingular matrices
X ∈ F m×m and Y ∈ F n×n such that A = X BY (i.e., if and only if A is equivalent to B).

(e) If A ∈ F m×n has rank k, then A = XBY, for some X ∈ F m×k , Y ∈ F k×n, and nonsingular
B ∈ F k×k .

(f) If A1 ∈ F n1×n1 , . . . , Ak ∈ F nk×nk , then rank(A1 ⊕ · · · ⊕ Ak) = rank(A1) + · · · + rank(Ak).

20. Let A, B ∈ F n×n with A similar to B .

(a) A is equivalent to B .

(b) rank(A) = rank(B).

(c) tr A = tr B .

21. Equivalence of matrices is an equivalence relation on F m×n.
22. Similarity of matrices is an equivalence relation on F n×n.

23. If A ∈ F m×n and rank(A) = k, then A is equivalent to

[
Ik 0
0 0

]

, and so any two matrices of the

same size and rank are equivalent.
24. (For information on the determination of whether two matrices are similar, see Chapter 6.)
25. [Lay03, Sec. 6.1] If A ∈ R

n×n, then for any x ∈ RS(A) and any y ∈ ker(A), xT y = 0. So the
row space and kernel of a real matrix are orthogonal to one another. (See Chapter 5 for more on
orthogonality.)

Examples:

1. If A =

⎡

⎢
⎣

1 7 −2

0 −1 1

2 13 −3

⎤

⎥
⎦∈ R

3×3, then any vector of the form

⎡

⎢
⎣

a + 7b − 2c

−b + c

2a + 13b − 3c

⎤

⎥
⎦

⎛

⎜
⎝=

⎡

⎢
⎣

1 7 −2

0 −1 1

2 13 −3

⎤

⎥
⎦

⎡

⎢
⎣

a

b

c

⎤

⎥
⎦

⎞

⎟
⎠

is in range(A), for any a , b, c ∈ R. Since a row echelon form of A is

⎡

⎢
⎣

1 7 −2

0 1 −1

0 0 0

⎤

⎥
⎦, we know that

the set

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

1

0

2

⎤

⎥
⎦ ,

⎡

⎢
⎣

7

−1

13

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
is a basis for range(A), and the set

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

1

7

−2

⎤

⎥
⎦ ,

⎡

⎢
⎣

0

1

−1

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
is a basis for

RS(A). Since its reduced row echelon form is

⎡

⎢
⎣

1 0 5

0 1 −1

0 0 0

⎤

⎥
⎦, the set

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

1

0

5

⎤

⎥
⎦ ,

⎡

⎢
⎣

0

1

−1

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
is another

basis for RS(A).
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2. If A =

⎡

⎢
⎣

1 7 −2

0 −1 1

2 13 −3

⎤

⎥
⎦ ∈ R

3×3, then using the reduced row echelon form given in the previ-

ous example, solutions to Ax = 0 have the form x = c

⎡

⎢
⎣

−5

1

1

⎤

⎥
⎦, for any c ∈ R. So ker(A) =

Span

⎛

⎜
⎝

⎡

⎢
⎣

−5

1

1

⎤

⎥
⎦

⎞

⎟
⎠.

3. If A ∈ R
3×5 has the reduced row echelon form

⎡

⎢
⎣

1 0 3 0 2
0 1 −2 0 7
0 0 0 1 −1

⎤

⎥
⎦, then any solution to

Ax = 0 has the form

x = c1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3

2

1

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ c2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

−7

0

1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

for some c1, c2 ∈ R. So,

ker(A) = Span

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3

2

1

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2

−7

0

1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

4. Example 1 above shows that

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

1

0

2

⎤

⎥
⎦ ,

⎡

⎢
⎣

7

−1

13

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
is a linearly independent set having the same span

as the set

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

1

0

2

⎤

⎥
⎦ ,

⎡

⎢
⎣

7

−1

13

⎤

⎥
⎦ ,

⎡

⎢
⎣

−2

1

−3

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
.

5.

[
1 7
2 −3

]

is similar to

[
37 −46
31 −39

]

because

[
37 −46
31 −39

]

=
[
−2 3

3 −4

]−1 [
1 7
2 −3

] [
−2 3

3 −4

]

.

2.5 Nonsingularity Characterizations

From the previous discussion, we can add to the list of nonsingularity characterizations of a square matrix
that was started in the previous chapter.

Facts: The following facts can be found in [HJ85, p. 14] or [Lay03, Sections 2.3 and 4.6].

1. If A ∈ F n×n, then the following are equivalent.

(a) A is nonsingular.

(b) The columns of A are linearly independent.

(c) The dimension of range(A) is n.
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(d) The range of A is F n.

(e) The equation Ax = b is consistent for each b ∈ F n.

(f) If the equation Ax = b is consistent, then the solution is unique.

(g) The equation Ax = b has a unique solution for each b ∈ F n.

(h) The rows of A are linearly independent.

(i) The dimension of RS(A) is n.

(j) The row space of A is F n.

(k) The dimension of ker(A) is 0.

(l) The only solution to Ax = 0 is x = 0.

(m) The rank of A is n.

(n) The determinant of A is nonzero. (See Section 4.1 for the definition of the determinant.)

2.6 Coordinates and Change of Basis

Coordinates are used to transform a problem in a more abstract vector space (e.g., the vector space of
polynomials of degree less than or equal to 3) to a problem in F n.

Definitions:

Suppose that B = (b1, b2, . . . , bn) is an ordered basis for a vector space V over a field F and x ∈ V . The
coordinates of x relative to the ordered basis B (or the B-coordinates of x) are the scalar coefficients
c1, c2, . . . , cn ∈ F such that x = c1x1 + c2x2 + · · · + cnxn. Whenever coordinates are involved, the
vector space is assumed to be nonzero and finite dimensional.

If c1, c2, . . . , cn are the B-coordinates of x, then the vector in F n,

[x]B =

⎡

⎢
⎢
⎢
⎢
⎣

c1

c2

...

cn

⎤

⎥
⎥
⎥
⎥
⎦

,

is the coordinate vector of x relative to B or the B-coordinate vector of x.
The mapping x → [x]B is the coordinate mapping determined by B.
If B and B′ are ordered bases for the vector space F n, then the change-of-basis matrix from B to B′ is

the matrix whose columns are the B′-coordinate vectors of the vectors in B and is denoted by B′ [I ]B . Such
a matrix is also called a transition matrix.

Facts: The following facts can be found in [Lay03, Sections 4.4 and 4.7] or [HJ85, Section 0.10]:

1. For any vector x ∈ F n with the standard ordered basis En = (e1, e2, . . . , en), we have x = [x]En .
2. For any ordered basis B = (b1, . . . , bn) of a vector space V , we have [bi ]B = ei .
3. If dim(V) = n, then the coordinate mapping is a one-to-one linear transformation from V onto

F n. (See Chapter 3 for the definition of linear transformation.)
4. IfB is an ordered basis for a vector space V and v1, v2 ∈ V , then v1 = v2 if and only if [v1]B = [v2]B .
5. Let V be a vector space over a field F , and suppose B is an ordered basis for V . Then for any

x, v1, . . . , vk ∈ V and c1, . . . , ck ∈ F , x = c1v1 + · · · + ck vk if and only if [x]B = c1[v1]B + · · · +
ck[vk]B . So, for any x, v1, . . . , vk ∈ V , x ∈ Span(v1, . . . , vk) if and only if [x]B ∈ Span([v1]B , . . . ,
[vk]B).

6. SupposeB is an ordered basis for an n-dimensional vector space V over a field F and v1, . . . , vk ∈ V.
The set S = {v1, . . . , vk} is linearly independent in V if and only if the set S ′ = {[v1]B , . . . , [vk]B}
is linearly independent in F n.
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7. Let V be a vector space over a field F with dim(V) = n, and suppose B is an ordered basis for V .
Then Span(v1, v2, . . . , vk) = V for some v1, v2, . . . , vk ∈ V if and only if Span([v1]B , [v2]B , . . . ,
[vk]B) = F n.

8. Suppose B is an ordered basis for a vector space V over a field F with dim(V) = n, and let
S = {v1, . . . , vn} be a subset of V . Then S is a basis for V if and only if {[v1]B , . . . , [vn]B} is a basis
for F n if and only if the matrix [[v1]B , . . . , [vn]B] is invertible.

9. If B and B′ are ordered bases for a vector space V , then [x]B′ = B′ [I ]B [x]B for any x ∈ V .
Furthermore, B′ [I ]B is the only matrix such that for any x ∈ V , [x]B′ = B′ [I ]B [x]B .

10. Any change-of-basis matrix is invertible.
11. If B is invertible, then B is a change-of-basis matrix. Specifically, if B = [b1 · · · bn] ∈ F n×n, then

B = En [I ]B , where B = (b1, . . . , bn) is an ordered basis for F n.
12. If B = (b1, . . . , bn) is an ordered basis for F n, then En [I ]B = [b1 · · · bn].
13. If B and B′ are ordered bases for a vector space V , then B[I ]B′ = (B′ [I ]B)−1.
14. If B and B′ are ordered bases for F n, then B′ [I ]B = (B′ [I ]En )(En [I ]B).

Examples:

1. If p(x) = anxn + an−1xn−1 + · · · + a1x + a0 ∈ F [x ; n] with the standard ordered basis

B = (1, x , x2, . . . , xn), then [p(x)]B =

⎡

⎢
⎢
⎢
⎢
⎣

a0

a1

...

an

⎤

⎥
⎥
⎥
⎥
⎦

.

2. The set B =
([

1

−1

]

,

[
0

3

])

forms an ordered basis for R
2. If E2 is the standard ordered basis

for R
2, then the change-of-basis matrix from B to E2 is E2 [T]B =

[
1 0

−1 3

]

, and (E2 [T]B)−1 =
[

1 0
1
3

1
3

]

. So for v =
[

3

1

]

in the standard ordered basis, we find that [v]B = (E2 [T]B)−1v =
[

3
4
3

]

.

To check this, we can easily see that v =
[

3

1

]

= 3

[
1

−1

]

+ 4
3

[
0

3

]

.

3. The set B′ = (1, 1 + x , 1 + x2) is an ordered basis for R[x ; 2], and using the standard ordered basis

B = (1, x , x2) for R[x ; 2] we have B[P ]B′ =

⎡

⎢
⎣

1 1 1

0 1 0

0 0 1

⎤

⎥
⎦. So, (B[P ]B′ )−1 =

⎡

⎢
⎣

1 −1 −1

0 1 0

0 0 1

⎤

⎥
⎦

and [5 − 2x + 3x2]B′ = (B[P ]B′ )−1

⎡

⎢
⎣

5

−2

3

⎤

⎥
⎦ =

⎡

⎢
⎣

4

−2

3

⎤

⎥
⎦. Of course, we can see 5 − 2x + 3x2 =

4(1) − 2(1 + x) + 3(1 + x2).

4. If we want to change from the ordered basis B1 =
([

1

−1

]

,

[
0

3

])

in R
2 to the ordered basis B2 =

([
2

1

]

,

[
5

0

])

, then the resulting change-of-basis matrix is B2 [T]B1 = (E2 [T]B2 )−1(E2 [T]B1 ) =
[

2 5

1 0

]−1 [
1 0

−1 3

]

=
[

−1 3
3
5 − 6

5

]

.
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5. Let S = {5 − 2x + 3x2, 3 − x + 2x2, 8 + 3x} in R[x ; 2] with the standard ordered basis B =

(1, x , x2). The matrix A =

⎡

⎢
⎣

5 3 8

−2 −1 3

3 2 0

⎤

⎥
⎦ contains the B-coordinate vectors for the polynomials

in S and it has row echelon form

⎡

⎢
⎣

5 3 8

0 1 31

0 0 1

⎤

⎥
⎦. Since this row echelon form shows that A is

nonsingular, we know by Fact 8 above that S is a basis for R[x ; 2].

2.7 Idempotence and Nilpotence

Definitions:

A is an idempotent if A2 = A.
A is nilpotent if, for some k ≥ 0, Ak = 0.

Facts: All of the following facts except those with a specific reference are immediate from the definitions.

1. Every idempotent except the identity matrix is singular.
2. Let A ∈ F n×n. The following statements are equivalent.

(a) A is an idempotent.

(b) I − A is an idempotent.

(c) If v ∈ range(A), then Av = v.

(d) F n = ker A ⊕ rangeA.

(e) [HJ85, p. 37 and p. 148] A is similar to

[
Ik 0
0 0

]

, for some k ≤ n.

3. If A1 and A2 are idempotents of the same size and commute, then A1 A2 is an idempotent.
4. If A1 and A2 are idempotents of the same size and A1 A2 = A2 A1 = 0, then A1 + A2 is an

idempotent.
5. If A ∈ F n×n is nilpotent, then An = 0.
6. If A is nilpotent and B is of the same size and commutes with A, then AB is nilpotent.
7. If A1 and A2 are nilpotent matrices of the same size and A1 A2 = A2 A1 = 0, then A1 + A2 is

nilpotent.

Examples:

1.

[
−8 12
−6 9

]

is an idempotent.

[
1 −1
1 −1

]

is nilpotent.
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