Preliminaries

This chapter contains a variety of definitions of terms that are used throughout the rest of the book, but are not part of linear algebra and/or do not fit naturally into another chapter. Since these definitions have little connection with each other, a different organization is followed; the definitions are (loosely) alphabetized and each definition is followed by an example.

Algebra

An (associative) algebra is a vector space A over a field F together with a multiplication $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}\mathbf{y}$ from $A \times A$ to A satisfying two *distributive* properties and *associativity*, i.e., for all $a, b \in F$ and all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in A$:

$$(a\mathbf{x} + b\mathbf{y})\mathbf{z} = a(\mathbf{x}\mathbf{z}) + b(\mathbf{y}\mathbf{z}), \qquad \mathbf{x}(a\mathbf{y} + b\mathbf{z}) = a(\mathbf{x}\mathbf{y}) + b(\mathbf{x}\mathbf{z}) \qquad (\mathbf{x}\mathbf{y})\mathbf{z} = \mathbf{x}(\mathbf{y}\mathbf{z}).$$

Except in Chapter 69 and Chapter 70 the term *algebra* means associative algebra. In these two chapters, associativity is not assumed.

Examples:

The vector space of $n \times n$ matrices over a field F with matrix multiplication is an (associative) algebra.

Boundary

The **boundary** ∂S of a subset *S* of the real numbers or the complex numbers is the intersection of the closure of *S* and the closure of the complement of *S*.

Examples:

The boundary of $S = \{x \in \mathbb{C} : |z| \le 1\}$ is $\partial S = \{x \in \mathbb{C} : |z| = 1\}$.

Complement

The **complement** of the set *X* in universe *S*, denoted $S \setminus X$, is all elements of *S* that are not in *X*. When the universe is clear (frequently the universe is $\{1, ..., n\}$) then this can be denoted X^c .

Examples:

For $S = \{1, 2, 3, 4, 5\}$ and $X = \{1, 3\}, S \setminus X = \{2, 4, 5\}.$

Complex Numbers

Let $a, b \in \mathbb{R}$. The symbol *i* denotes $\sqrt{-1}$.

The complex conjugate of a complex number c = a + bi is $\overline{c} = a - bi$. The imaginary part of a + bi is $\operatorname{im}(a + bi) = b$ and the real part is $\operatorname{re}(a + bi) = a$. The absolute value of c = a + bi is $|c| = \sqrt{a^2 + b^2}$. The **argument** of the nonzero complex number $re^{i\theta}$ is θ (with $r, \theta \in \mathbb{R}$ and 0 < r and $0 \le \theta < 2\pi$). The **open right half plane** \mathbb{C}^+ is $\{z \in \mathbb{C} : re(z) > 0\}$. The **closed right half plane** \mathbb{C}^-_0 is $\{z \in \mathbb{C} : re(z) \ge 0\}$. The **open left half plane** \mathbb{C}^- is $\{z \in \mathbb{C} : re(z) < 0\}$. The **closed left half plane** \mathbb{C}^- is $\{z \in \mathbb{C} : re(z) \le 0\}$.

Facts:

1. $|c| = c\overline{c}$ 2. $|re^{i\theta}| = r$ 3. $re^{i\theta} = r\cos\theta + r\sin\theta i$ 4. $\overline{re^{i\theta}} = re^{-i\theta}$

Examples:

 $\overline{2+3i} = 2-3i$, $\overline{1.4} = 1.4$, $1+i = \sqrt{2}e^{i\pi/4}$.

Conjugate Partition

Let $v = (u_1, u_2, ..., u_n)$ be a sequence of integers such that $u_1 \ge u_2 \ge \cdots \ge u_n \ge 0$. The **conjugate partition** of v is $v^* = (u_1^*, ..., u_t^*)$, where u_i^* is the number of js such that $u_j \ge i$. t is sometimes taken to be u_1 , but is sometimes greater (obtained by extending with 0s).

Facts: If *t* is chosen to be the minimum, and $u_n > 0$, $v^{**} = v$.

Examples:

 $(4, 3, 2, 2, 1)^* = (5, 4, 2, 1).$

Convexity

Let *V* be a real or complex vector space.

Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \in V$. A vector of the form $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_k\mathbf{v}_k$ with all the coefficients a_i nonnegative and $\sum a_i = 1$ is a **convex combination** of $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.

A set $S \subseteq V$ is **convex** if any convex combination of vectors in S is in S.

The **convex hull** of *S* is the set of all convex combinations of *S* and is denoted by Con(*S*).

An **extreme point** of a closed convex set *S* is a point $\mathbf{v} \in S$ that is not a nontrivial convex combination of other points in *S*, i.e., $a\mathbf{x} + (1 - a)\mathbf{y} = \mathbf{v}$ and $0 \le a \le 1$ implies $\mathbf{x} = \mathbf{y} = \mathbf{v}$.

A **convex polytope** is the convex hull of a finite set of vectors in \mathbb{R}^n .

Let $S \subseteq V$ be convex. A function $f: S \to \mathbb{R}$ is **convex** if for all $a \in \mathbb{R}$, 0 < a < 1, $\mathbf{x}, \mathbf{y} \in S$, $f(a\mathbf{x} + (1 - a)\mathbf{y}) \le af(\mathbf{x}) + (1 - a)f(\mathbf{y})$.

Facts:

1. A set $S \subseteq V$ is convex if and only if Con(S) = S.

- 2. The extreme points of Con(S) are contained in *S*.
- 3. [HJ85] Krein-Milman Theorem: A compact convex set is the convex hull of its extreme points.

Examples:

- 1. $[1.9, 0.8]^T$ is a convex combination of $[1, -1]^T$ and $[2, 1]^T$, since $[1.9, 0.8]^T = 0.1[1, -1]^T + 0.9[2, 1]^T$.
- 2. The set *K* of all $\mathbf{v} \in \mathbb{R}^3$ such that $v_i \ge 0, i = 1, 2, 3$ is a convex set. Its only extreme point is the zero vector.

Elementary Symmetric Function

The *k***th elementary symmetric function of** α_i , i = 1, ..., n is

$$S_k(\alpha_1,\ldots,\alpha_n) = \sum_{1 < i_1 < i_2 < \cdots < i_k < n} \alpha_{i_1} \alpha_{i_2} \ldots \alpha_{i_k}.$$

Examples:

 $S_2(\alpha_1, \alpha_2, \alpha_3) = \alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \alpha_2 \alpha_3,$ $S_1(\alpha_1, \dots, \alpha_n) = \alpha_1 + \alpha_2 + \dots + \alpha_n, S_n(\alpha_1, \dots, \alpha_n) = \alpha_1 \alpha_2 \dots \alpha_n.$

Equivalence Relation

A binary relation \equiv in a nonempty set S is an **equivalence relation** if it satisfies the following conditions:

- 1. (Reflexive) For all $a \in S$, $a \equiv a$.
- 2. (Symmetric) For all $a, b \in S$, $a \equiv b$ implies $b \equiv a$.
- 3. (Transitive) For all $a, b, c \in S$, $a \equiv b$ and $a \equiv b$ imply $a \equiv c$.

Examples:

Congruence mod n is an equivalence relation on the integers.

Field

A **field** is a set *F* with at least two elements together with a function $F \times F \rightarrow F$ called addition, denoted $(a,b) \rightarrow a + b$, and a function $F \times F \rightarrow F$ called multiplication, denoted $(a,b) \rightarrow ab$, which satisfy the following axioms:

- 1. (Commutativity) For each $a, b \in F$, a + b = b + a and ab = ba.
- 2. (Associativity) For each $a, b, c \in F$, (a + b) + c = a + (b + c) and (ab)c = a(bc).
- 3. (Identities) There exist two elements 0 and 1 in F such that 0 + a = a and 1a = a for each $a \in F$. 4. (Inverses) For each $a \in F$, there exists an element $-a \in F$ such that (-a) + a = 0. For each
- nonzero $a \in F$, there exists an element $a^{-1} \in F$ such that $a^{-1}a = 1$.
- 5. (Distributivity) For each $a, b, c \in F$, a(b + c) = ab + ac.

Examples:

The real numbers, \mathbb{R} , the complex numbers, \mathbb{C} , and the rational numbers, \mathbb{Q} , are all fields. The set of integers, \mathbb{Z} , is not a field.

Greatest Integer Function

The **greatest integer** or **floor** function $\lfloor x \rfloor$ (defined on the real numbers) is the greatest integer less than or equal to *x*.

Examples:

 $\lfloor 1.5 \rfloor = 1, \lfloor 1 \rfloor = 1, \lfloor -1.5 \rfloor = -2.$

Group

(See also Chapter 67 and Chapter 68.)

A **group** is a nonempty set *G* with a function $G \times G \rightarrow G$ denoted $(a, b) \rightarrow ab$, which satisfies the following axioms:

- 1. (Associativity) For each $a, b, c \in G$, (ab)c = a(bc).
- 2. (Identity) There exists an element $e \in G$ such that ea = a = ae for each $a \in G$.
- 3. (Inverses) For each $a \in G$, there exists an element $a^{-1} \in G$ such that $a^{-1}a = e = aa^{-1}$.

A group is **abelian** if ab = ba for all $a, b \in G$.

Examples:

- 1. Any vector space is an abelian group under +.
- 2. The set of invertible $n \times n$ real matrices is a group under matrix multiplication.
- 3. The set of all permutations of a set is a group under composition.

Interlaces

Let $a_1 \ge a_2 \ge \cdots \ge a_n$ and $b_1 \ge b_2 \ge \cdots \ge b_{n-1}$, two sequences of real numbers arranged in decreasing order. Then the sequence $\{b_i\}$ **interlaces** the sequence $\{a_i\}$ if $a_n \le b_{n-1} \le a_{n-1} \cdots \le b_1 \le a_1$. Further, if all of the above inequalities can be taken to be strict, the sequence $\{b_i\}$ **strictly interlaces** the sequence $\{a_i\}$. Analogous definitions are given when the numbers are in increasing order.

Examples:

 $7 \ge 2.2 \ge -1$ strictly interlaces $11 \ge \pi \ge 0 \ge -2.6$.

Majorization

Let $\alpha = (a_1, a_2, \dots, a_n), \beta = (b_1, b_2, \dots, b_n)$ be sequences of real numbers.

 $\alpha^{\downarrow} = (a_1^{\downarrow}, a_2^{\downarrow}, \dots, a_n^{\downarrow})$ is the permutation of α with entries in nonincreasing order, i.e., $a_1^{\downarrow} \ge a_2^{\downarrow} \ge \dots \ge a_n^{\downarrow}$. $\alpha^{\uparrow} = (a_1^{\uparrow}, a_2^{\uparrow}, \dots, a_n^{\uparrow})$ is the permutation of α with entries in nondecreasing order, i.e., $a_1^{\uparrow} \le a_2^{\uparrow} \le \dots \le a_n^{\downarrow}$.

 α weakly majorizes β , written $\alpha \succeq_w \beta$ or $\beta \preceq_w \alpha$, if:

$$\sum_{i=1}^{k} a_i^{\downarrow} \ge \sum_{i=1}^{k} b_i^{\downarrow} \quad \text{for all } k = 1, \dots n.$$

 α majorizes β , written $\alpha \succeq \beta$ or $\beta \preceq \alpha$, if $\alpha \succeq_w \beta$ and $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$.

Examples:

- 1. If $\alpha = (2, 2, -1.3, 8, 7.7)$, then $\alpha^{\downarrow} = (8, 7.7, 2, 2, -1.3)$ and $\alpha^{\uparrow} = (-1.3, 2, 2, 7.7, 8)$.
- 2. $(5,3,1.5,1.5,1) \succeq (4,3,2,2,1)$ and $(6,5,0) \succeq_w (4,3,2)$.

Metric

A **metric** on a set *S* is a real-valued function $f: S \times S \rightarrow \mathbb{R}$ satisfying the following conditions:

- 1. For all $x, y \in S$, $f(x, y) \ge 0$.
- 2. For all $x \in S$, f(x, x) = 0.
- 3. For all $x, y \in S$, f(x, y) = 0 implies x = y.
- 4. For all $x, y \in S$, f(x, y) = f(y, x).
- 5. For all $x, y, z \in S$, $f(x, y) + f(y, z) \ge f(x, z)$.

A metric is intended as a measure of distance between elements of the set.

Examples:

If $\|\cdot\|$ is a norm on a vector space, then $f(x, y) = \|\mathbf{x} - \mathbf{y}\|$ is a metric.

Multiset

A multiset is an unordered list of elements that allows repetition.

Examples:

Any set is a multiset, but $\{1, 1, 3, -2, -2, -2\}$ is a multiset that is not a set.

O and o

Let, *f*, *g* be real valued functions of \mathbb{N} or \mathbb{R} , i.e., *f*, *g* : $\mathbb{N} \to \mathbb{R}$ or *f*, *g* : $\mathbb{R} \to \mathbb{R}$.

f is O(g) (**big-oh** of *g*) if there exist constants *C*, *k* such that $|f(x)| \le C|g(x)|$ for all $x \ge k$. *f* is o(g) (**little-oh** of *g*) if $\lim_{x\to\infty} \left|\frac{f(n)}{g(n)}\right| = 0$.

Examples:

 $x^2 + x$ is $O(x^2)$ and $\ln x$ is o(x).

Path-connected

A subset *S* of the complex numbers is **path-connected** if for any $x, y \in S$ there exists a continuous function $p : [0,1] \rightarrow S$ with p(0) = x and p(1) = y.

Examples:

 $S = \{z \in \mathbb{C} : 1 \le |z| \le 2\}$ and the line $\{a + bi : a = 2b + 3\}$ are path-connected.

Permutations

A permutation is a one-to-one onto function from a set to itself.

The set of permutations of $\{1, ..., n\}$ is denoted S_n . The identity permutation is denoted ε_n . In this book, permutations are generally assumed to be elements of S_n for some n.

A cycle or *k*-cycle is a permutation τ such that there is a subset $\{a_1, \ldots, a_k\}$ of $\{1, \ldots, n\}$ satisfying $\tau(a_i) = a_{i+1}$ and $\tau(a_k) = a_1$; this is denoted $\tau = (a_1, a_2, \ldots, a_k)$. The **length** of this cycle is *k*.

A transposition is a 2-cycle.

A permutation is **even** (respectively, **odd**) if it can be written as the product of an even (odd) number of transpositions.

The **sign** of a permutation τ , denoted sgn τ , is +1 if τ is even and -1 if τ is odd.

Note: Permutations are functions and act from the left (see Examples).

Facts:

- 1. Every permutation can be expressed as a product of disjoint cycles. This expression is unique up to the order of the cycles in the decomposition and cyclic permutation within a cycle.
- 2. Every permutation can be written as a product of transpositions. If some such expression includes an even number of transpositions, then every such expression includes an even number of transpositions.
- 3. S_n with the operation of composition is a group.

Examples:

```
1. If \tau = (1523) \in S_6, then \tau(1) = 5, \tau(2) = 3, \tau(3) = 1, \tau(4) = 4, \tau(5) = 2, \tau(6) = 6.
```

```
2. (123)(12)=(13).
```

3. sgn(1234) = -1, because (1234) = (14)(13)(12).

Ring

(See also Section 23.1)

A **ring** is a set *R* together with a function $R \times R \rightarrow R$ called addition, denoted $(a, b) \rightarrow a + b$, and a function $R \times R \rightarrow R$ called multiplication, denoted $(a, b) \rightarrow ab$, which satisfy the following axioms:

- 1. (Commutativity of +) For each $a, b \in R, a + b = b + a$.
- 2. (Associativity) For each $a, b, c \in R$, (a + b) + c = a + (b + c) and (ab)c = a(bc).
- 3. (+ identity) There exists an element 0 in *R* such that 0 + a = a.
- 4. (+ inverse) For each $a \in R$, there exists an element $-a \in R$ such that (-a) + a = 0.
- 5. (Distributivity) For each $a, b, c \in R$, a(b + c) = ab + ac and (a + b)c = ac + bc.

A zero divisor in a ring R is a nonzero element $a \in R$ such that there exists a nonzero $b \in R$ with ab = 0 or ba = 0.

Examples:

- The set of integers, \mathbb{Z} , is a ring.
- Any field is a ring.
- Let *F* be a field. Then $F^{n \times n}$, with matrix addition and matrix multiplication as the operations, is a ring. $E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ are zero divisors since $E_{11}E_{22} = 0_2$.

Sign

(For sign of a permutation, see *permutation*.)

The **sign** of a complex number is defined by:

$$\operatorname{sign}(z) = \begin{cases} z/|z|, & \text{if } z \neq 0; \\ 1, & \text{if } z = 0. \end{cases}$$

If z is a real number, this sign function yields 1 or -1.

This sign function is used in numerical linear algebra.

The sign of a real number (as used in sign patterns) is defined by:

$$\operatorname{sgn}(a) = \begin{cases} +, & \text{if } a > 0; \\ 0, & \text{if } a = 0; \\ -, & \text{if } a < 0. \end{cases}$$

This sign function is used in combinatorial linear algebra, and the product of a sign and a real number is interpreted in the obvious way as a real number.

Warning: The two sign functions disagree on the sign of 0.

Examples:

sgn(-1.3) = -, sign(-1.3) = -1, sgn(0) = 0, sign(0) = 1, $sign(1+i) = \frac{(1+i)}{\sqrt{2}}$.

References

[HJ85] [HJ85] R. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.