
Preliminaries

This chapter contains a variety of definitions of terms that are used throughout the rest of the book, but are
not part of linear algebra and/or do not fit naturally into another chapter. Since these definitions have little
connection with each other, a different organization is followed; the definitions are (loosely) alphabetized and
each definition is followed by an example.

Algebra

An (associative) algebra is a vector space A over a field F together with a multiplication (x, y) �→ xy from
A × A to A satisfying two distributive properties and associativity, i.e., for all a , b ∈ F and all x, y, z ∈ A:

(ax + by)z = a(xz) + b(yz), x(ay + bz) = a(xy) + b(xz) (xy)z = x(yz).

Except in Chapter 69 and Chapter 70 the term algebra means associative algebra. In these two chapters,
associativity is not assumed.

Examples:

The vector space of n × n matrices over a field F with matrix multiplication is an (associative) algebra.

Boundary

The boundary ∂S of a subset S of the real numbers or the complex numbers is the intersection of the closure
of S and the closure of the complement of S.

Examples:

The boundary of S = {x ∈ C : |z| ≤ 1} is ∂S = {x ∈ C : |z| = 1}.

Complement

The complement of the set X in universe S, denoted S \ X , is all elements of S that are not in X . When the
universe is clear (frequently the universe is {1, . . . , n}) then this can be denoted Xc .

Examples:

For S = {1, 2, 3, 4, 5} and X = {1, 3}, S \ X = {2, 4, 5}.

Complex Numbers

Let a , b ∈ R. The symbol i denotes
√−1.

The complex conjugate of a complex number c = a + bi is c = a − bi .
The imaginary part of a + bi is im(a + bi) = b and the real part is re(a + bi) = a .
The absolute value of c = a + bi is |c | = √

a2 + b2.
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The argument of the nonzero complex number reiθ is θ (with r, θ ∈ R and 0 < r and 0 ≤ θ < 2π).
The open right half plane C

+ is {z ∈ C : re(z) > 0}.
The closed right half plane C

+
0 is {z ∈ C : re(z) ≥ 0}.

The open left half plane C
− is {z ∈ C : re(z) < 0}.

The closed left half plane C
− is {z ∈ C : re(z) ≤ 0}.

Facts:

1. |c | = cc
2. |reiθ | = r
3. reiθ = r cos θ + r sin θ i
4. reiθ = re−iθ

Examples:

2 + 3i = 2 − 3i , 1.4 = 1.4, 1 + i = √
2eiπ/4.

Conjugate Partition

Let υ = (u1, u2, . . . , un) be a sequence of integers such that u1 ≥ u2 ≥ · · · ≥ un ≥ 0. The conjugate partition
of υ is υ∗ = (u∗

1, . . . , u∗
t ), where u∗

i is the number of j s such that u j ≥ i . t is sometimes taken to be u1, but is
sometimes greater (obtained by extending with 0s).

Facts: If t is chosen to be the minimum, and un > 0, υ∗∗ = υ.

Examples:

(4, 3, 2, 2, 1)∗ = (5, 4, 2, 1).

Convexity

Let V be a real or complex vector space.
Let {v1, v2, . . . , vk} ∈ V . A vector of the form a1v1+a2v2+· · ·+ak vk with all the coefficients ai nonnegative

and
∑

ai = 1 is a convex combination of {v1, v2, . . . , vk}.
A set S ⊆ V is convex if any convex combination of vectors in S is in S.
The convex hull of S is the set of all convex combinations of S and is denoted by Con(S).
An extreme point of a closed convex set S is a point v ∈ S that is not a nontrivial convex combination of

other points in S, i.e., ax + (1 − a)y = v and 0 ≤ a ≤ 1 implies x = y = v.
A convex polytope is the convex hull of a finite set of vectors in R

n.
Let S ⊆ V be convex. A function f : S → R is convex if for all a ∈ R, 0 < a < 1, x, y ∈ S, f (ax + (1 −

a)y) ≤ a f (x) + (1 − a) f (y).

Facts:

1. A set S ⊆ V is convex if and only if Con(S) = S.
2. The extreme points of Con(S) are contained in S.
3. [HJ85] Krein-Milman Theorem: A compact convex set is the convex hull of its extreme points.

Examples:

1. [1.9, 0.8]T is a convex combination of [1, −1]T and [2, 1]T , since [1.9, 0.8]T = 0.1[1, −1]T +
0.9[2, 1]T .

2. The set K of all v ∈ R
3 such that vi ≥ 0, i = 1, 2, 3 is a convex set. Its only extreme point is the

zero vector.
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Elementary Symmetric Function

The kth elementary symmetric function of αi , i = 1, . . . , n is

Sk(α1, . . . , αn) =
∑

1<i1<i2<···<ik<n

αi1αi2 . . . αik .

Examples:

S2(α1, α2, α3) = α1α2 + α1α3 + α2α3,
S1(α1, . . . , αn) = α1 + α2 + · · · + αn, Sn(α1, . . . , αn) = α1α2 . . . αn.

Equivalence Relation

A binary relation ≡ in a nonempty set S is an equivalence relation if it satisfies the following conditions:

1. (Reflexive) For all a ∈ S, a ≡ a .
2. (Symmetric) For all a , b ∈ S, a ≡ b implies b ≡ a .
3. (Transitive) For all a , b, c ∈ S, a ≡ b and a ≡ b imply a ≡ c .

Examples:

Congruence mod n is an equivalence relation on the integers.

Field

A field is a set F with at least two elements together with a function F × F → F called addition, denoted
(a , b) → a + b, and a function F × F → F called multiplication, denoted (a , b) → ab, which satisfy the
following axioms:

1. (Commutativity) For each a , b ∈ F , a + b = b + a and ab = ba .
2. (Associativity) For each a , b, c ∈ F , (a + b) + c = a + (b + c) and (ab)c = a(bc).
3. (Identities) There exist two elements 0 and 1 in F such that 0 + a = a and 1a = a for each a ∈ F .
4. (Inverses) For each a ∈ F , there exists an element −a ∈ F such that (−a) + a = 0. For each

nonzero a ∈ F , there exists an element a−1 ∈ F such that a−1a = 1.
5. (Distributivity) For each a , b, c ∈ F , a(b + c) = ab + ac .

Examples:

The real numbers, R, the complex numbers, C, and the rational numbers, Q, are all fields. The set of integers,
Z, is not a field.

Greatest Integer Function

The greatest integer or floor function �x� (defined on the real numbers) is the greatest integer less than or
equal to x .

Examples:

�1.5� = 1, �1� = 1, �−1.5� = −2.
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Group

(See also Chapter 67 and Chapter 68.)

A group is a nonempty set G with a function G × G → G denoted (a , b) → ab, which satisfies the following
axioms:

1. (Associativity) For each a , b, c ∈ G , (ab)c = a(bc).
2. (Identity) There exists an element e ∈ G such that ea = a = ae for each a ∈ G .
3. (Inverses) For each a ∈ G , there exists an element a−1 ∈ G such that a−1a = e = aa−1.

A group is abelian if ab = ba for all a , b ∈ G .

Examples:

1. Any vector space is an abelian group under +.
2. The set of invertible n × n real matrices is a group under matrix multiplication.
3. The set of all permutations of a set is a group under composition.

Interlaces

Let a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn−1, two sequences of real numbers arranged in decreasing
order. Then the sequence {bi } interlaces the sequence {ai } if an ≤ bn−1 ≤ an−1 · · · ≤ b1 ≤ a1. Further, if
all of the above inequalities can be taken to be strict, the sequence {bi } strictly interlaces the sequence {ai }.
Analogous definitions are given when the numbers are in increasing order.

Examples:

7 ≥ 2.2 ≥ −1 strictly interlaces 11 ≥ π ≥ 0 ≥ −2.6.

Majorization

Let α = (a1, a2, . . . , an), β = (b1, b2, . . . , bn) be sequences of real numbers.
α↓ = (a↓

1 , a↓
2 , . . . , a↓

n ) is the permutation ofα with entries in nonincreasing order, i.e., a↓
1 ≥ a↓

2 ≥ . . . ≥ a↓
n .

α↑ = (a↑
1 , a↑

2 , . . . , a↑
n ) is the permutation of α with entries in nondecreasing order, i.e., a↑

1 ≤ a↑
2 ≤ . . . ≤

a↑
n .
α weakly majorizes β, written α �w β or β �w α, if:

k∑

i=1

a↓
i ≥

k∑

i=1

b↓
i for all k = 1, . . . n.

α majorizes β, written α � β or β � α, if α �w β and
∑n

i=1 ai = ∑n
i=1 bi .

Examples:

1. If α = (2, 2, −1.3, 8, 7.7), then α↓ = (8, 7.7, 2, 2, −1.3) and α↑ = (−1.3, 2, 2, 7.7, 8).
2. (5,3,1.5,1.5,1) � (4,3,2,2,1) and (6,5,0) �w (4,3,2).

Metric

A metric on a set S is a real-valued function f : S × S → R satisfying the following conditions:

1. For all x , y ∈ S, f (x , y) ≥ 0.
2. For all x ∈ S, f (x , x) = 0.
3. For all x , y ∈ S, f (x , y) = 0 implies x = y.
4. For all x , y ∈ S, f (x , y) = f (y, x).
5. For all x , y, z ∈ S, f (x , y) + f (y, z) ≥ f (x , z).

A metric is intended as a measure of distance between elements of the set.
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Examples:

If ‖ · ‖ is a norm on a vector space, then f (x , y) = ‖x − y‖ is a metric.

Multiset

A multiset is an unordered list of elements that allows repetition.

Examples:

Any set is a multiset, but {1, 1, 3, −2, −2, −2} is a multiset that is not a set.

O and o

Let, f, g be real valued functions of N or R, i.e., f, g : N → R or f, g : R → R.
f is O(g ) (big-oh of g ) if there exist constants C , k such that | f (x)| ≤ C |g (x)| for all x ≥ k.

f is o(g ) (little-oh of g ) if limx→∞
∣
∣
∣

f (n)
g (n)

∣
∣
∣ = 0.

Examples:

x2 + x is O(x2) and ln x is o(x).

Path-connected

A subset S of the complex numbers is path-connected if for any x , y ∈ S there exists a continuous function
p : [0, 1] → S with p(0) = x and p(1) = y.

Examples:

S = {z ∈ C : 1 ≤ |z| ≤ 2} and the line {a + bi : a = 2b + 3} are path-connected.

Permutations

A permutation is a one-to-one onto function from a set to itself.
The set of permutations of {1, . . . , n} is denoted Sn. The identity permutation is denoted εn. In this book,

permutations are generally assumed to be elements of Sn for some n.
A cycle or k-cycle is a permutation τ such that there is a subset {a1, . . . , ak} of {1, . . . , n} satisfying τ (ai ) =

ai+1 and τ (ak) = a1; this is denoted τ = (a1, a2, . . . , ak). The length of this cycle is k.
A transposition is a 2-cycle.
A permutation is even (respectively, odd) if it can be written as the product of an even (odd) number of

transpositions.
The sign of a permutation τ , denoted sgn τ , is +1 if τ is even and −1 if τ is odd.
Note: Permutations are functions and act from the left (see Examples).

Facts:

1. Every permutation can be expressed as a product of disjoint cycles. This expression is unique up to
the order of the cycles in the decomposition and cyclic permutation within a cycle.

2. Every permutation can be written as a product of transpositions. If some such expression
includes an even number of transpositions, then every such expression includes an even num-
ber of transpositions.

3. Sn with the operation of composition is a group.
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Examples:

1. If τ = (1523) ∈ S6, then τ (1) = 5, τ (2) = 3, τ (3) = 1, τ (4) = 4, τ (5) = 2, τ (6) = 6.
2. (123)(12)=(13).
3. sgn(1234) = −1, because (1234) = (14)(13)(12).

Ring

(See also Section 23.1)
A ring is a set R together with a function R × R → R called addition, denoted (a , b) → a +b, and a function
R × R → R called multiplication, denoted (a , b) → ab, which satisfy the following axioms:

1. (Commutativity of +) For each a , b ∈ R, a + b = b + a .
2. (Associativity) For each a , b, c ∈ R, (a + b) + c = a + (b + c) and (ab)c = a(bc).
3. (+ identity) There exists an element 0 in R such that 0 + a = a .
4. (+ inverse) For each a ∈ R, there exists an element −a ∈ R such that (−a) + a = 0.
5. (Distributivity) For each a , b, c ∈ R, a(b + c) = ab + ac and (a + b)c = ac + bc .

A zero divisor in a ring R is a nonzero element a ∈ R such that there exists a nonzero b ∈ R with ab = 0
or ba = 0.

Examples:

� The set of integers, Z, is a ring.
� Any field is a ring.
� Let F be a field. Then F n×n, with matrix addition and matrix multiplication as the operations, is

a ring. E 11 =
[

1 0
0 0

]

and E 22 =
[

0 0
0 1

]

are zero divisors since E 11 E 22 = 02.

Sign

(For sign of a permutation, see permutation.)
The sign of a complex number is defined by:

sign(z) =
{

z/|z|, if z �= 0;
1, if z = 0.

If z is a real number, this sign function yields 1 or −1.
This sign function is used in numerical linear algebra.
The sign of a real number (as used in sign patterns) is defined by:

sgn(a) =






+, if a > 0;
0, if a = 0;
−, if a < 0.

This sign function is used in combinatorial linear algebra, and the product of a sign and a real number is
interpreted in the obvious way as a real number.
Warning: The two sign functions disagree on the sign of 0.

Examples:

sgn(−1.3) = −, sign(−1.3) = −1, sgn(0) = 0, sign(0) = 1,

sign(1 + i)=
(1 + i)√

2
.
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